首页> 外文OA文献 >Enhancing production from coal seam gas reservoir by hydraulic fracturing with controlled fracture vertical growth
【2h】

Enhancing production from coal seam gas reservoir by hydraulic fracturing with controlled fracture vertical growth

机译:通过控制裂缝垂直增长的水力压裂提高煤层气藏的产量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hydraulic fracturing is an important technique to stimulate coal seam gas extraction by enhancing connectivity between coal seams and wellbore via hydraulically induced fractures. The Efficiency of dewatering and methane production of hydraulically stimulated coal seam gas reservoir is highly depending on the geometry of induced fractures; especially the fracture vertical height which is controlled by different kinds of parameters including in-situ reservoir conditions and stimulation pumping schedules. Field practice shows that in many cases fracture stimulation was not successful due to the overgrowth of fracture height leading to longer dewatering time and delayed methane production. The purpose of this study is to perform hydraulic fracturing simulation on a specific coal seam gas reservoir stimulation case to control fracture vertical growth by optimising pumping schedule. First, mini-frac data analysis was performed to determine the in-situ stresses of the coal seams. Next, main fracture analysis was conducted through pressure history match to determine fracture geometry. The simulation was conducted using a 3D hydraulic fracturing simulator E-Stimplan 3D. The hydraulically generated fracture was then applied to a compositional reservoir simulator CMG – GEM to perform production history matching. Meantime, a detailed parametric study was also carried out to gain a deep understanding of fracture vertical growth under reservoir condition and to investigate the feasibility of controlling vertical growth by variation of pumping schedule. Based on the sensitivity analysis, an optimised pumping schedule was applied to the simulator to control fracture vertical growth and finally enhanced production estimation was performed and compared with the initial results of stimulation. It can be concluded that while the contrasts of Young’s modulus, Poisson’s ratio and fracture toughness between pay zone and surrounding layers have limited containment effects, in-situ stresses play a leading role in fracture vertical growth, it is therefore highly important to perform in-situ stress calibration in the simulation of fracture geometry; under reservoir property and in-situ stress conditions, optimising pumping schedule is an effective and feasible method to control fracture vertical growth, reduce dewatering time and enhancemethane production in specific cases.
机译:水力压裂是通过水力压裂来增强煤层与井眼之间的连通性来刺激煤层瓦斯抽采的一项重要技术。水力激发煤层气藏的脱水和甲烷生产效率在很大程度上取决于诱发裂缝的几何形状。尤其是裂缝的垂直高度,它受不同参数的控制,包括原位储层条件和增产时间表。现场实践表明,由于裂缝高度的过度增长导致较长的脱水时间和延迟的甲烷生成,因此在许多情况下,裂缝的增产没有成功。这项研究的目的是对特定煤层气藏增产实例进行水力压裂模拟,以通过优化抽采进度来控制裂缝的垂直扩展。首先,进行微型压裂数据分析以确定煤层的原地应力。接下来,通过压力历史匹配进行主要裂缝分析,以确定裂缝的几何形状。使用3D水力压裂模拟器E-Stimplan 3D进行了模拟。然后将液压产生的裂缝应用于组合储层模拟器CMG – GEM,以进行生产历史匹配。同时,还进行了详细的参数研究,以加深对储层条件下裂缝垂直生长的了解,并研究通过改变抽水方案控制垂直生长的可行性。在敏感性分析的基础上,将优化的抽采方案应用于模拟器,以控制裂缝的垂直生长,最后进行了增产估算,并将其与增产的初步结果进行了比较。可以得出的结论是,尽管杨氏模量,泊松比和产层与周围层之间的断裂韧性的反差具有有限的围堵作用,但是原位应力在裂缝的垂直生长中起着主导作用,因此,进行原位应力非常重要。模拟裂缝几何形状的原位应力标定;在储层物性和地应力条件下,优化抽采方案是控制裂缝垂直发育,减少脱水时间,提高甲烷产量的有效方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号