首页> 外文OA文献 >Robust object tracking using the particle filtering and level set methods
【2h】

Robust object tracking using the particle filtering and level set methods

机译:使用粒子过滤和水平集方法进行稳定的对象跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Robust object tracking plays a central role in many applications of image processing, computer vision and automatic control. In this thesis, robust object tracking under complex environments, including heavy clutters in the background, low resolution of the image sequences and non-stationary camera, has been studied. The interest of this study stems from the improvement of the performance of visual tracking using particle filtering.A Geometric Active contour-based Tracking Estimator, namely GATE, has been developed in order to tackle the problems in robust object tracking where the existence of multiple features or good object detection is not guaranteed. GATE combines particle filtering and the level set-based active contour method. The particle filtering method is able to deal with nonlinear and non-Gaussian recursive estimation problems, and the level set-based active contour method is capable of classifying state space of particle filtering under the methodology of one class classification. By integrating this classifier into the particle filtering, geometric information introduced by the shape prior and pose invariance of the tracked object in the level set-based active contour method can be utilised to prevent the particles corresponding to outlier measurements from being heavily reweighted. Hence, this procedure reshapes and refines the posterior distribution of the particle filtering.To verify the performance of GATE, the performance of the standard particle filter is compared with that of GATE. Since video sequences in different applications are usually captured by diverse devices, GATE and the standard particle filters with the identical initialisation are studied on image sequences captured by the handhold, stationary and PTZ camera, respectively. According to experimental results, even though a simple color observation model based on the Hue-Saturation-Value (HSV) color histogram is adopted, the newly developed. GATE significantly improves the performance of the particle filtering for object tracking in complex environments. Meanwhile, GATE initialises a novel approach to tackle the impoverishment problem for recursive Bayesian estimation using sampling method.
机译:强大的对象跟踪功能在图像处理,计算机视觉和自动控制的许多应用中起着核心作用。本文研究了复杂环境下的鲁棒目标跟踪,包括背景杂乱,图像序列分辨率低和非平稳摄像机。这项研究的兴趣来自使用粒子滤波的视觉跟踪性能的提高。已开发出一种基于几何主动轮廓的跟踪估计器,即GATE,以解决存在多个特征的鲁棒对象跟踪问题。或不能保证良好的物体检测。 GATE结合了粒子滤波和基于水平集的主动轮廓方法。粒子滤波方法能够处理非线性和非高斯递归估计问题,而基于水平集的主动轮廓法能够在一类分类方法下对粒子滤波的状态空间进行分类。通过将此分类器集成到粒子滤波中,可以利用基于级别集的主动轮廓方法中跟踪对象的形状先验和姿态不变性引入的几何信息来防止严重偏离对应于异常值的粒子的权重。因此,此过程将重塑并优化粒子过滤的后分布。为了验证GATE的性能,将标准粒子过滤器的性能与GATE的性能进行了比较。由于通常使用不同的设备捕获不同应用中的视频序列,因此分别对手持,固定和PTZ摄像机捕获的图像序列研究GATE和具有相同初始化的标准粒子滤波器。根据实验结果,即使采用了基于色相饱和度值(HSV)颜色直方图的简单颜色观察模型,还是新开发的。 GATE显着提高了粒子过滤在复杂环境中进行对象跟踪的性能。同时,GATE初始化了一种新颖的方法来解决使用采样方法进行递归贝叶斯估计的贫困问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号