首页> 外文OA文献 >Search for novel multifunctional materials: a comprehensive neutron and synchrotron diffraction study on cobaltates and spinels
【2h】

Search for novel multifunctional materials: a comprehensive neutron and synchrotron diffraction study on cobaltates and spinels

机译:寻找新型多功能材料:对钴酸盐和尖晶石进行全面的中子和同步子衍射研究

摘要

Multiferroics exhibit tremendous potential in technological applications, of which the interplaybetween the ferro-/antiferromagnetic, ferroelectricity, and ferroelasticity can be manipulatedby external parameters such as electric or magnetic fields and even can be created byproper control of internal parameters, such as oxygen-content, cation doping, and internalpressure. Invaluable insight into the multiferroicity can be provided by investigating the roleof such parameters in the crystallographic and magnetic structures of transition metal oxides.In this thesis, a comprehensive studies of contribution of oxygen-deficiencies and cation dopingto the various phases are presented, which utilize the neutron and synchrotron powderdiffraction.The multivalent nature of cobalt ions in SrCoO3d causes an oxygen-content dependentphase diagram. It is vital to determine the precise crystallographic and magnetic structure ofoxygen-vacancy ordered SrCoO3d , which provides prerequisite to reveal the mechanism ofits multiferroicity in the corresponding thin film samples. Using the neutron and synchrotronpowder diffraction techniques, the correct space group and precise magnetic structures aredetermined for the different oxygen-vacancy ordered phases: the brownmillerite SrCoO2:5,the tetragonal SrCoO2:875, and the cubic SrCoO3.Ferroelectricity can be induced by the canted spin configuration, which exists widely inthe frustrated spin systems. With such an expectation, Zn-substituted CuFe2O4 was studiedand a comprehensive phase diagram was built for Cu1xZnxFe2O4. Spin canting couldlead to a spin spiral phase which could possibly induce a multiferroic state as observed inCuFeO2. The purpose of this project was to further investigate the spin canting in ZndopedCuFe2O4 and elucidate the possibility of multiferroicity in this system. Furthermore,pure ZnFe2O4 is already an interesting highly frustrated spin system. Magnetite is the oldestknown magnet. As the first known multiferroics, the ferroelectricity in Fe3O4 is drivenby the Verwey transition. However, the microscopic origin of the Verwey transition in Fe3O4is still in debate. In order to obtain a deeper insight into the mechanism of the charge ordering,Cu-doped Fe3O4 was investigated using the high-resolution neutron and synchrotrondiffraction. The main emphasis was the stability of the Verwey transition with charge carrierdoping.
机译:多重铁磁在技术应用中显示出巨大的潜力,其中铁/反铁磁,铁电和铁弹性之间的相互作用可以通过外部参数(例如电场或磁场)来操纵,甚至可以通过适当控制内部参数(例如氧含量)来产生。阳离子掺杂和内压。通过研究这些参数在过渡金属氧化物的晶体学和磁性结构中的作用,可以提供对多铁性的宝贵见解。在本文中,我们对缺氧和阳离子掺杂对各相的贡献进行了综合研究,利用SrCoO3d中钴离子的多价性质导致氧含量依赖性相图。确定氧空位有序SrCoO3d的精确晶体学和磁性结构至关重要,这为揭示相应薄膜样品中多铁性的机理提供了前提。利用中子和同步粉末的衍射技术,可以确定不同氧空位有序相的正确空间群和精确的磁性结构:棕褐色的SrCoO2:5,四方的SrCoO2:875和立方的SrCoO3。自旋配置,广泛存在于受挫的自旋系统中。在这样的期望下,研究了锌取代的CuFe2O4,并建立了Cu1xZnxFe2O4的综合相图。自旋倾斜可能会导致自旋螺旋相,这可能会引起CuFeO2中观察到的多铁性态。该项目的目的是进一步研究ZndopedCuFe2O4中的自旋倾斜,并阐明该系统中多铁性的可能性。此外,纯ZnFe2O4已经是一个有趣的高度受挫的自旋体系。磁铁矿是最古老的磁铁。作为最早已知的多铁化合物,Fe3O4中的铁电是由Verwey转变驱动的。然而,Fe3O4的Verwey转变的微观起源仍在争论中。为了更深入地了解电荷有序的机理,使用高分辨率中子和同步中子衍射研究了掺杂Cu的Fe3O4。主要重点是带载流子掺杂的Verwey过渡的稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号