首页> 外文OA文献 >Stochastic real-time urban traffic state estimation: searching for the most likely hypothesis with limited and heterogeneous sensor data
【2h】

Stochastic real-time urban traffic state estimation: searching for the most likely hypothesis with limited and heterogeneous sensor data

机译:随机实时城市交通状态估计:使用有限且异构的传感器数据搜索最可能的假设

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The aim of this thesis is to improve road traffic information for the purpose of traffic signal control. Loop detectors are the prevalent sensors for state-of-the-art adaptive traffic control systems. Loops provide accurate measurements, but have a limited vehicle detection area. Additional sensor installations increase the total detection area and can offer performance improvements for adaptive control. New sensor types become available from time to time and are often economically attractive candidates for additional installations. They provide measurements that are generally not compatible with existing loop detector measurements. The problems with adding new sensors are: (a) the new sensor's incompatibility is an integration challenge for existing systems and (b) the increased detection area is possibly still limited in total size and non-contiguous.The research challenge is to combine in real-time the data from loops and other sensors from a limited total detection area and estimate the traffic state in a useful form for adaptive traffic control. This thesis proposes an urban traffic state estimation method that performs data fusion of heterogeneous traffic measurements from a non-contiguous detection area that exploits vehicle interactions. The proposed method uses a Bayesian algorithm that searches for the most likely set of vehicle trajectories that justify the measurements. The most likely set of vehicle trajectories is found by combining (a) a reversible jump Markov chain Monte Carlo algorithm, (b) driver and vehicle behaviour modelling, and (c) probabilistic sensor modelling.The methodology is tested with different sensor types in simulated and field experiments and evaluated against ground truth trajectories. The result is a set of estimated vehicle trajectories updated in real-time that are measurement-consistent. A single sensor provides measurements of a specific type for a specific location on the road. In contrast, the estimated trajectories allow traffic engineers to extract most types of traffic information from anywhere on the road. This is achieved by programming virtual sensors that extract desired information from the estimated trajectories. The abstraction offered by the trajectories provides flexibility and a future-proof approach to new traffic sensing technologies.
机译:本文的目的是为了改善交通信号以控制交通信号。环路检测器是最先进的自适应交通控制系统的主流传感器。回路可提供准确的测量结果,但车辆检测区域有限。附加的传感器安装会增加总检测面积,并可以改善自适应控制的性能。新的传感器类型不时出现,并且在经济上通常是附加安装的诱人候选。它们提供的测量值通常与现有的环路检测器测量值不兼容。增加新传感器的问题是:(a)新传感器的不兼容性是现有系统的集成挑战;(b)增加的检测区域可能仍然在总尺寸上是有限的并且是不连续的。 -从有限的总检测区域对来自环路和其他传感器的数据进行计时,并以一种有用的形式估算交通状态,以进行自适应交通控制。本文提出了一种城市交通状态估计方法,该方法对来自利用车辆交互作用的非连续检测区域的异构交通测量数据进行数据融合。所提出的方法使用贝叶斯算法,该算法搜索最有可能证明测量结果正确的一组车辆轨迹。通过组合(a)可逆跳跃马尔可夫链蒙特卡洛算法,(b)驾驶员和车辆行为建模以及(c)概率传感器建模,可以找到最可能的车辆轨迹集。实地实验,并根据地面真实轨迹进行评估。结果是一组估计的,实时更新的,与测量一致的车辆轨迹。单个传感器可为道路上的特定位置提供特定类型的测量值。相反,估计的轨迹使交通工程师可以从道路上的任何位置提取大多数类型的交通信息。这是通过对虚拟传感器进行编程来实现的,这些虚拟传感器从估计的轨迹中提取所需的信息。轨迹提供的抽象为新的交通传感技术提供了灵活性和面向未来的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号