首页> 外文OA文献 >Multi-scale simulation of gas transport in organic shale with the lattice Boltzmann method
【2h】

Multi-scale simulation of gas transport in organic shale with the lattice Boltzmann method

机译:格子玻尔兹曼方法对有机页岩中气体运移的多尺度模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Successful hydrocarbon production from shale gas reservoir in the United States has initiated interest in its exploration and development around the world. However, a lack of scientific knowledge hinders the proposal of this energy alternative. The aim of this study is to develop an innovative multi-scale flow simulation tool to characterize the hydrocarbon transport in organic shale and to provide a comprehensive work-flow in estimating its permeability. Flow simulations based on lattice Boltzmann (LB) method are carried out at pore-scale and core-scale to investigate the gas transport behaviour, and the problems of gas slippage, gas desorption/adsorption, surface diffusion and pore morphology at both scales are addressed accordingly. Specifically, a pore-scale multiple-relaxation-time (MRT) LB model is adopted to study the gas flow in micro-pores and a new boundary condition, which combines Langmuir adsorption theory with kinetic boundary condition, is proposed to capture the gas slippage and the surface diffusion of adsorbed gas. Later, this pore-scale MRT LB model is applied to study the gas transport in reconstructed shale samples and to identify the effect of pore morphology on gas transport. At last, considering the huge computational cost involved in the application of the pore-scale LB model to a larger computation domain, an effective core-scale generalized LB model is employed for gas flow in the shale matrix consisting of the organic matter (OM) and inorganic matter (IOM). The dusty gas model (DGM) combined with the generalized Maxwell-Stefan model (GMS) are adopted to account for the multiple transport mechanisms in each component. The simulation results show that the gas transport in micro-pores of shale matrix is influenced by multiple effects. The adsorbed gas and its surface diffusion have a profound influence on gas transport in shale matrix, and the apparent permeability can be either enhanced or reduced depending on variations in surface diffusion. In addition, gas exhibits different flow behaviours in organic matter (OM) and inorganic matter (IOM). The pore structure of the shale matrix, the total organic content (TOC), and the pore size distribution control the gas transport and the apparent permeability. The current study is expected to lead to new developments in studying fluid dynamics in micro-porous media and the developed simulation technique of multi-scale flow processes offers both theoretical and practical significance.
机译:美国页岩气储层成功生产碳氢化合物引起了人们对其全球勘探和开发的兴趣。但是,缺乏科学知识阻碍了这种能源替代方案的提出。这项研究的目的是开发一种创新的多尺度流动模拟工具,以表征有机页岩中的烃类运移,并为估算其渗透率提供全面的工作流程。在孔隙尺度和岩心尺度进行了基于格子玻尔兹曼(LB)方法的流动模拟,研究了气体的输送行为,并解决了在两个尺度上的瓦斯滑移,气体解吸/吸附,表面扩散和孔隙形态问题。相应地。具体而言,采用孔尺度多重弛豫时间(MRT)LB模型研究微孔中的气体流动,并提出了一种新的边界条件,将朗缪尔吸附理论与动力学边界条件相结合,以捕获气体滑脱。以及吸附气体的表面扩散。后来,该孔隙尺度MRT LB模型被用于研究重建页岩样品中的气体运移,并确定了孔隙形态对气体运移的影响。最后,考虑到将孔隙尺度LB模型应用于较大的计算域会涉及巨大的计算成本,因此采用有效的核尺度广义LB模型对由有机物(OM)组成的页岩基质中的气流进行了计算。和无机物(IOM)。尘埃气体模型(DGM)与广义的Maxwell-Stefan模型(GMS)结合使用,以说明每个组件中的多种传输机制。模拟结果表明,页岩基质微孔中的气体运移受多种影响。吸附的气体及其表面扩散对页岩基质中的气体传输有深远的影响,视渗透率可以根据表面扩散的变化而提高或降低。此外,气体在有机物(OM)和无机物(IOM)中表现出不同的流动行为。页岩基质的孔隙结构,总有机物含量(TOC)和孔径分布控制着气体的输送和表观渗透率。预期当前的研究将导致研究微孔介质中流体动力学的新发展,而发达的多尺度流动过程模拟技术具有理论和实践意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号