首页> 外文OA文献 >The building blocks of a quantum computer based on donor spins in silicon
【2h】

The building blocks of a quantum computer based on donor spins in silicon

机译:基于硅中施主自旋的量子计算机的构建块

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A computer with quantum mechanical building blocks, or qubits, promises a new class of computational capability and is a natural platform on which to simulate microscopic systems. Building a quantum computer, however, is a formidable challenge. The system chosen must be engineered to balance contradicting requirements. The fragile quantum states must be sufficiently protected from noise in the environment, while being accessible for accurate measurement and control. Moreover, the system must be scalable to millions of qubits that can be made to interact in complex sequences. Recent experimental breakthroughs have highlighted spin qubits in silicon as a promising platform. Firstly, fabrication of these semiconductor devices would capitalize on the expertise developed by the microelectronics industry. Secondly, and more fundamentally, silicon can provide a virtually noiseless environment for spin qubits while maintaining qubit addressability. This thesis builds upon the foundational work on phosphorus donor electron spin qubits in silicon. We achieve dramatic improvements in the fundamental single qubit operations: the fidelities of readout, initialization and control of the electron spin are all enhanced to 99.9% simultaneously and we report a new record coherence time of 0.98 seconds. Furthermore, we provide novel theoretical proposals for the next steps in scaling this technology. We present a two-qubit operation that can be performed with fidelity exceeding 99%, robust to variability in donor positioning, and we devise a scheme for high-fidelity short-range qubit transport that may prove invaluable in the design of a quantum processor. The experimental setup required for scale-up is also addressed, as we report the first measurement of the silicon spin qubit device in a cryogen-free dilution refrigerator and present techniques to mitigate the noise induced by mechanical vibrations. Our work has solved several crucial problems on the road-map towards a full-scale processor. It highlights the scalability and promise of this technology, which may result in the world's first quantum computer.
机译:具有量子机械构件或量子位的计算机有望提供一类新的计算能力,并且是模拟微观系统的自然平台。然而,建造量子计算机是一个巨大的挑战。所选系统必须经过精心设计以平衡相互矛盾的要求。脆弱的量子态必须得到充分的保护,免受环境噪声的影响,同时可以进行精确的测量和控制。此外,该系统必须可扩展到数百万个量子位,可以使它们在复杂序列中进行交互。最近的实验突破突显了硅的自旋量子位是一个有前途的平台。首先,这些半导体器件的制造将利用微电子工业发展的专业知识。其次,从根本上讲,硅可以为自旋量子位提供几乎无噪声的环境,同时保持量子位的可寻址性。本文基于硅中磷供体电子自旋量子位的基础研究。我们在基本的单量子位操作方面实现了显着的改进:电子自旋的读出,初始化和控制的保真度同时提高到99.9%,并且我们报告了创纪录的0.98秒的相干时间。此外,我们为扩展此技术的下一步提供了新颖的理论建议。我们提出了一个可以在保真度超过99%的情况下执行的双量子位运算,它对施主定位的可变性具有鲁棒性,并且我们设计了一种高保真短距离量子位传输方案,该方案在量子处理器的设计中可能具有无可估量的价值。当我们报告了在无制冷剂的稀释冰箱中对硅自旋量子位设备的首次测量并提出了减轻由机械振动引起的噪声的技术时,规模化所需的实验设置也得到了解决。我们的工作已经解决了向全尺寸处理器发展的路线图上的几个关键问题。它强调了这项技术的可扩展性和前景,这可能会导致世界上第一台量子计算机的诞生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号