首页> 外文OA文献 >Hygro-thermo-mechanical study of concrete elements subject to elevated temperatures: assessment of spalling risk and moisture interactions
【2h】

Hygro-thermo-mechanical study of concrete elements subject to elevated temperatures: assessment of spalling risk and moisture interactions

机译:高温下混凝土构件的湿热力学研究:剥落风险和湿气相互作用的评估

摘要

Fire induced spalling of concrete upon exposure to high and rapidly rising temperatures can structurally weaken members and structures through section loss, while leaving reinforcement unrestrained and exposed. Spalling remains a significant challenge in structural design, particularly with the increasing use of higher strength concretes and more durable concretes with denser microstructure. Several decades of experimental and numerical research have demonstrated that fire induced spalling is a complex hygro-thermo-mechanical (HTM) phenomenon; quantitative models for reliably predicting spalling still require significant development.The first part of this dissertation involves development of a comprehensive pseudo one-dimensional coupled hygro-thermo-mechanical model for investigating, and predicting, concrete behaviour at elevated temperatures. Using a novel mechanical hybrid-type fibre model, variations in mechanical boundary conditions and imposed actions, or prestressing, on the fire spalling risk of plate and shell type structures are examined. The model is shown to predict temperature and gas pressure fields well, along with times and extents of first spalling. A simple criterion for explaining fire spalling is given, and the important influence of internal cracking in sections is discussed.Important for high temperature HTM models, together with advanced models for durability, creep and shrinkage of concrete, are good representations of water vapour sorption isotherms (WVSIs). WVSIs describe retained moisture at a prevailing humidity, and are intimately related to the cementitious microstructure. The second part of this dissertation involves development of a new physically-based model for predicting adsorption, desorption and scanning isotherms of hardened Portland cement type materials. After calibration of microstructural parameters from published adsorption data, the model predicts experimental WVSI data sets well. Microstructural predictions are consistent with ¹H nuclear magnetic resonance and mercury intrusion porosimetry data.In the third, and final, part of this dissertation an experimental study of WVSIs and equilibrium kinetics was undertaken. Novel apparatus for accurate determination of cementitious WVSIs at elevated temperatures are developed. Comprehensive data at 23°C–80°C is shown to clarify impacts of temperature on sorption hysteresis; important implications of observed time dependent non-Fickian kinetics are also studied.
机译:暴露于高温和急速升高的温度下,火灾引起的混凝土剥落会通过断面损失在结构上削弱构件和结构,同时使钢筋不受约束并暴露在外。剥落仍然是结构设计中的重大挑战,特别是随着越来越多地使用高强度混凝土和具有更致密微观结构的更耐用混凝土。数十年的实验和数值研究表明,火灾引起的剥落是一种复杂的湿热机械现象(HTM)。可靠地预测剥落的定量模型仍需要大量开发。本论文的第一部分涉及开发一种综合的伪一维耦合湿热力学模型,用于研究和预测高温下的混凝土行为。使用新颖的机械混合型纤维模型,研究了机械边界条件的变化以及所施加的作用或预应力对板壳型结构火灾剥落风险的影响。该模型可以很好地预测温度和气压场以及第一次剥落的时间和程度。给出了解释火灾剥落的简单标准,并讨论了截面内部裂缝的重要影响。高温HTM模型的重要意义,以及混凝土耐久性,蠕变和收缩的先进模型,是水蒸气吸附等温线的良好代表。 (WVSI)。 WVSI描述了在主要湿度下保留的水分,并且与胶凝微结构密切相关。本文的第二部分涉及开发一种新的基于物理的模型,用于预测硬化硅酸盐水泥类材料的吸附,解吸和扫描等温线。根据已发表的吸附数据对微结构参数进行校准后,该模型可以很好地预测WVSI实验数据集。微观结构的预测与1 H核磁共振和压汞法相吻合。第三部分,也是最后一部分,对WVSI和平衡动力学进行了实验研究。开发了用于在高温下准确测定胶结WVSI的新型仪器。结果表明,在23°C–80°C的温度范围内,综合数据可以阐明温度对吸附滞后的影响;还研究了观察到的时间依赖性非菲克动力学的重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号