首页> 外文OA文献 >Quaternion-based deep belief networks fine-tuning
【2h】

Quaternion-based deep belief networks fine-tuning

机译:基于四元数的深度信任网络的微调

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Deep learning techniques have been paramount in the last years, mainly due to their outstanding results in a number of applications. In this paper, we address the issue of fine-tuning parameters of Deep Belief Networks by means of meta-heuristics in which real-valued decision variables are described by quaternions. Such approaches essentially perform optimization in fitness landscapes that are mapped to a different representation based on hypercomplex numbers that may generate smoother surfaces. We therefore can map the optimization process onto a new space representation that is more suitable to learning parameters. Also, we proposed two approaches based on Harmony Search and quaternions that outperform the state-of-the-art results obtained so far in three public datasets for the reconstruction of binary images.
机译:近年来,深度学习技术一直是最重要的,这主要是由于其在许多应用中的杰出成果。在本文中,我们通过元启发式方法解决了深度信念网络的参数微调问题,在该方法中,四元数描述了实值决策变量。此类方法实质上在适合度景观中执行优化,该适合度景观基于可生成更平滑表面的超复杂数映射到不同的表示形式。因此,我们可以将优化过程映射到更适合学习参数的新空间表示形式上。此外,我们提出了两种基于“和谐搜索”和四元数的方法,它们优于迄今为止在三个用于重建二进制图像的公共数据集中获得的最新结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号