首页> 外文OA文献 >Block Coordinate Descent for Regularized Multi-convex Optimization
【2h】

Block Coordinate Descent for Regularized Multi-convex Optimization

机译:块坐标下降以进行正则多凸优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis considers regularized block multi-convex optimization, where the feasible set and objective function are generally non-convex but convex in each block of variables. I review some of its interesting examples and propose a generalized block coordinate descent (BCD) method. The generalized BCD uses three different block-update schemes.Based on the property of one block subproblem, one can freely choose one of the three schemes to update the corresponding block of variables. Appropriate choices of block-update schemes can often speed up the algorithm and greatly save computing time.Under certain conditions, I show that any limit point satisfies the Nash equilibrium conditions. Furthermore, I establish its global convergence and estimate its asymptotic convergence rate by assuming a property based on the Kurdyka-{L}ojasiewicz inequality. As a consequence, this thesis gives a global linear convergence result of cyclic block coordinate descent for strongly convex optimization. The proposed algorithms are adapted for factorizing nonnegative matrices and tensors, as well as completing them from their incomplete observations. The algorithms were tested on synthetic data, hyperspectral data, as well as image sets from the CBCL, ORL and Swimmer databases. Compared to the existing state-of-the-art algorithms, the proposed algorithms demonstrate superior performance in both speed and solution quality.
机译:本文考虑正则化块多凸优化,其中可行集和目标函数通常是非凸的,但在每个变量块中都是凸的。我回顾了其中一些有趣的示例,并提出了广义块坐标下降(BCD)方法。广义BCD使用三种不同的块更新方案,根据一个块子问题的性质,可以自由选择三种方案之一来更新相应的变量块。适当选择块更新方案通常可以加快算法速度并大大节省计算时间。在某些条件下,我证明了任何极限点都满足纳什均衡条件。此外,我通过假设基于Kurdyka-{ L} ojasiewicz不等式的性质来建立其全局收敛性并估计其渐近收敛率。因此,本文给出了用于强凸优化的循环块坐标下降的全局线性收敛结果。所提出的算法适用于分解非负矩阵和张量,以及根据其不完整的观测值完成它们。在合成数据,高光谱数据以及CBCL,ORL和Swimmer数据库的图像集上对算法进行了测试。与现有的最新算法相比,所提出的算法在速度和解决方案质量上均表现出卓越的性能。

著录项

  • 作者

    Xu Yangyang;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号