首页> 外文OA文献 >Synthetic Spin-Orbit and Light Field Coupling in Ultra-cold Quantum Gases
【2h】

Synthetic Spin-Orbit and Light Field Coupling in Ultra-cold Quantum Gases

机译:超冷量子气体中的合成自旋轨道和光场耦合

摘要

Ultra-cold quantum gases subjected to light-induced synthetic gauge potentials have become an emergent field of theoretical and experimental studies. Because of the novel application of two-photon Raman transitions, ultra-cold neutral atoms behave like charged particles in magnetic field. The Raman coupling naturally gives rise to an effective spin-orbit interaction which couples the atom’s center-of-mass motion to its selected pseudo-spin degrees of freedom. Combined with unprecedented controllability of interactions, geometry, disorder strength, spectroscopy, and high resolution measurement of momentum distribution, etc., we are truly in an exciting era of ful- filling and going beyond Richard Feynman’s vision of realizing quantum simulators to better understand the quantum mechanical nature of the universe, manifested immensely in the ultra-cold regimes.In this dissertation, we present a collection of theoretical progresses made by the doctoral candidate and his colleagues and collaborators. From the past few years of work, we mainly address three aspects of the synthetic spin-orbit and light field induced coupling in ultracold quantum gases: a) The ground-state physics of single- particle system, two-body bound states, and many-body systems, all of which are subjected to spin-orbit coupling originated from synthetic gauge potentials; b) The symmetry breaking, topological phase transition and quench dynamics, which are conveniently offered by the realized experimental setup; c) The proposal and impli- cations of light field induced dynamical spin-orbit coupling for atoms inside optical cavity. Our work represents an important advancement of theoretical understanding to the active research frontier of ultra-cold atom physics with spin-orbit coupling.
机译:受光诱导的合成标称电势的超冷量子气体已经成为理论和实验研究的新兴领域。由于双光子拉曼跃迁的新颖应用,超冷的中性原子在磁场中的行为类似于带电粒子。拉曼耦合自然会产生有效的自旋轨道相互作用,从而将原子的质心运动耦合到其选定的伪自旋自由度。结合相互作用,几何学,无序强度,光谱学和动量分布的高分辨率测量等前所未有的可控性,我们真正处于一个令人兴奋的实现时代,超越了理查德·费曼(Richard Feynman)实现量子模拟器以更好地理解量子力学的愿景。宇宙的量子力学性质,在超冷状态下表现得尤为明显。本文提出了博士候选人及其同事和合作者取得的一系列理论进展。从过去几年的工作中,我们主要研究超冷量子气体中合成自旋轨道和光场感应耦合的三个方面:a)单粒子系统的基态物理,两体束缚态以及许多体系统,所有这些系统都受到源自合成轨距势的自旋轨道耦合; b)对称断裂,拓扑相变和猝灭动力学,通过已实现的实验装置可以方便地提供; c)光场引起原子在光腔内发生动态自旋轨道耦合的建议和含义。我们的工作代表了对自旋轨道耦合超冷原子物理学活跃研究前沿的理论理解的重要进步。

著录项

  • 作者

    Dong Lin;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号