首页> 外文OA文献 >Probabilistic Determination of Thermal Conductivity and Cyclic Behavior of Nanocomposites via Multi-Phase Homogenization
【2h】

Probabilistic Determination of Thermal Conductivity and Cyclic Behavior of Nanocomposites via Multi-Phase Homogenization

机译:通过多相均质化概率确定纳米复合材料的导热系数和循环行为

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A novel multiscale approach is introduced for determining the thermal conductivity of polymer nanocomposites (PNCs) reinforced with single-walled carbon nanotubes (SWCNTs), which accounts for their intrinsic uncertainties associated with dispersion, distribution, and morphology. Heterogeneities in PNCs on nanoscale are identified and quantified in a statistical sense, for the calculation of effective local properties. A finite element method computes the overall macroscale properties of PNCs in conjunction with the Monte Carlo simulations. This Monte Carlo Finite Element Approach (MCFEA) allows for acquiring the randomness in spatial distribution of the nanotubes throughout the composite. Furthermore, the proposed MCFEA utilizes the nanotube content, orientation, aspect ratio and diameter inferred from their statistical information. Local SWCNT volume or weight fractions are assigned to the finite elements (FEs), based on various spatial probability distributions. Multi-phase homogenization techniques are applied to each FE to calculate the local thermal conductivities. Then, the Monte Carlo simulations provide the statistics on the overall thermal conductivity of the PNCs. Subsequently, dispersion characteristics of the nanotubes are assessed by incorporating nanotube agglomerates. In this regard, a multi-phase homogenization method is developed for enhanced accuracy and effectiveness. The effect of the nanotube orientation in a polymer is studied for the cases where the SWCNTs are randomly oriented as well as longitudinally aligned.The influence of voids existing in the polymer is investigated on the thermal conductivity, to capture the uncertainties in PNCs more extensively. Further, a unique damage evaluation model is proposed to assess the degradation of PNCs when subjected to thermal cycling. The growth in void content is represented with a Weibull-based equation, to quantify the deterioration of the thermal and mechanical properties of PNCs under thermal fatigue. In addition, the MCFEA considers the interface resistance of the carbon nanotubes as one of the key factors in the thermal conductivity of nanocomposites. Parametric studies are performed comprehensively. The numerical results obtained are compared with available analytical techniques at hand and with the data from pertinent independent experimental studies. It is found that the proposed MCFEA is capable of estimating the thermal conductivity with good accuracy.
机译:引入了一种新颖的多尺度方法来确定用单壁碳纳米管(SWCNT)增强的聚合物纳米复合材料(PNC)的导热率,这说明了它们与分散,分布和形态相关的固有不确定性。在统计学意义上识别和量化PNC中纳米级的异质性,以计算有效的局部特性。有限元方法结合蒙特卡洛模拟来计算PNC的整体宏尺度特性。这种蒙特卡洛有限元方法(MCFEA)允许获取整个复合材料中纳米管空间分布的随机性。此外,提出的MCFEA利用了从其统计信息推断出的纳米管含量,取向,长宽比和直径。基于各种空间概率分布,将局部SWCNT的体积或重量分数分配给有限元(FE)。将多相均质化技术应用于每个有限元,以计算局部热导率。然后,蒙特卡洛模拟提供了PNC整体导热系数的统计信息。随后,通过结合纳米管附聚物来评估纳米管的分散特性。在这方面,开发了一种多相均质化方法以提高准确性和有效性。研究了碳纳米管取向在聚合物中的影响,其中SWCNT随机取向和纵向排列。研究了聚合物中存在的空隙对导热率的影响,以更广泛地捕获PNC中的不确定性。此外,提出了一种独特的损伤评估模型来评估PNC在热循环过程中的退化。空隙含量的增长用基于Weibull的方程式表示,以量化PNC在热疲劳下的热性能和机械性能的下降。此外,MCFEA将碳纳米管的界面电阻视为纳米复合材料导热系数的关键因素之一。参数研究是全面执行的。将获得的数值结果与现有的分析技术以及来自相关独立实验研究的数据进行比较。发现所提出的MCFEA能够以良好的精度估计热导率。

著录项

  • 作者

    Tamer Atakan;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号