首页> 外文OA文献 >Adaptive Similarity Measures for Material Identification in Hyperspectral Imagery
【2h】

Adaptive Similarity Measures for Material Identification in Hyperspectral Imagery

机译:用于高光谱影像中材料识别的自适应相似性度量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Remotely-sensed hyperspectral imagery has become one the most advanced tools for analyzing the processes that shape the Earth and other planets. Effective, rapid analysis of high-volume, high-dimensional hyperspectral image data sets demands efficient, automated techniques to identify signatures of known materials in such imagery. In this thesis, we develop a framework for automatic material identification in hyperspectral imagery using adaptive similarity measures. We frame the material identification problem as a multiclass similarity-based classification problem, where our goal is to predict material labels for unlabeled target spectra based upon their similarities to source spectra with known material labels. As differences in capture conditions affect the spectral representations of materials, we divide the material identification problem into intra-domain (i.e., source and target spectra captured under identical conditions) and inter-domain (i.e., source and target spectra captured under different conditions) settings. The first component of this thesis develops adaptive similarity measures for intra-domain settings that measure the relevance of spectral features to the given classification task using small amounts of labeled data. We propose a technique based on multiclass Linear Discriminant Analysis (LDA) that combines several distinct similarity measures into a single hybrid measure capturing the strengths of each of the individual measures. We also provide a comparative survey of techniques for low-rank Mahalanobis metric learning, and demonstrate that regularized LDA yields competitive results to the state-of-the-art, at substantially lower computational cost. The second component of this thesis shifts the focus to inter-domain settings, and proposes a multiclass domain adaptation framework that reconciles systematic differences between spectra captured under similar, but not identical, conditions. Our framework computes a similarity-based mapping that captures structured, relative relationships between classes shared between source and target domains, allowing us apply a classifier trained using labeled source spectra to classify target spectra. We demonstrate improved domain adaptation accuracy in comparison to recently-proposed multitask learning and manifold alignment techniques in several case studies involving state-of-the-art synthetic and real-world hyperspectral imagery.
机译:遥感高光谱图像已经成为分析地球和其他行星形成过程的最先进工具之一。有效,快速地分析高容量,高维高光谱图像数据集需要有效的自动化技术,以识别此类图像中已知材料的特征。在本文中,我们开发了一种使用自适应相似性度量的高光谱图像中自动材料识别的框架。我们将材料识别问题归结为基于多类相似度的分类问题,我们的目标是基于未标记目标光谱与已知材料标签的源光谱的相似度来预测材料标签。由于捕获条件的差异会影响材料的光谱表示,因此我们将材料识别问题分为域内(即,在相同条件下捕获的源和目标光谱)和域间(即,在不同条件下捕获的源和目标光谱)设置。本文的第一部分是为域内设置开发自适应相似性度量,该度量使用少量标记数据来测量光谱特征与给定分类任务的相关性。我们提出了一种基于多类线性判别分析(LDA)的技术,该技术将几个不同的相似性度量组合到一个混合度量中,从而捕获了各个度量的优势。我们还提供了对低等级Mahalanobis度量学习技术的比较调查,并证明了正规化LDA可以以较低的计算成本,为最新技术提供有竞争力的结果。本文的第二部分将焦点转移到域间设置,并提出了一个多类域自适应框架,该框架可以协调在相似但不相同条件下捕获的光谱之间的系统差异。我们的框架计算出一个基于相似度的映射,该映射捕获源域和目标域之间共享的类之间的结构化,相对关系,从而使我们可以应用使用标记的源光谱训练的分类器来对目标光谱进行分类。与最近提出的多任务学习和流形对准技术相比,我们在涉及最先进的合成和真实世界的高光谱图像的几个案例研究中证明了改进的域自适应精度。

著录项

  • 作者

    Bue Brian;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号