首页> 外文OA文献 >Classification of hyperspectral imagery with neural networks: comparison to conventional tools
【2h】

Classification of hyperspectral imagery with neural networks: comparison to conventional tools

机译:使用神经网络对高光谱图像进行分类:与传统工具的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Efficient exploitation of hyperspectral imagery is of great importance in remote sensing. Artificial intelligence approaches have been receiving favorable reviews for classification of hyperspectral data because the complexity of such data challenges the limitations of many conventional methods. Artificial neural networks (ANNs) were shown to outperform traditional classifiers in many situations. However, studies that use the full spectral dimensionality of hyperspectral images to classify a large number of surface covers are scarce if non-existent. We advocate the need for methods that can handle the full dimensionality and a large number of classes to retain the discovery potential and the ability to discriminate classes with subtle spectral differences. We demonstrate that such a method exists in the family of ANNs. We compare the maximum likelihood, Mahalonobis distance, minimum distance, spectral angle mapper, and a hybrid ANN classifier for real hyperspectral AVIRIS data, using the full spectral resolution to map 23 cover types and using a small training set. Rigorous evaluation of the classification accuracies shows that the ANN outperforms the other methods and achieves ?90% accuracy on test data.
机译:高光谱图像的有效利用在遥感中非常重要。人工智能方法已经收到了对高光谱数据分类的良好评价,因为这种数据的复杂性挑战了许多常规方法的局限性。在许多情况下,人工神经网络(ANN)的性能均优于传统分类器。但是,如果不存在使用高光谱图像的全部光谱维数对大量表面覆盖物进行分类的研究,则很少。我们主张需要能够处理全部维数和大量类别的方法,以保留发现潜力以及区分具有细微光谱差异的类别的能力。我们证明了这种方法存在于人工神经网络家族中。我们使用完整的光谱分辨率映射23种覆盖类型并使用小型训练集,比较了最大似然,马哈洛诺比斯距离,最小距离,光谱角映射器和混合ANN分类器,用于真实的高光谱AVIRIS数据。对分类准确性的严格评估表明,人工神经网络的性能优于其他方法,并在测试数据上达到了90%的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号