首页> 外文OA文献 >An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information
【2h】

An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information

机译:结合基于X射线的计算机辅助检测和临床信息的自动化结核病筛查策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Lack of human resources and radiological interpretation expertise impair tuberculosis (TB) screening programmes in TB-endemic countries. Computer-aided detection (CAD) constitutes a viable alternative for chest radiograph (CXR) reading. However, no automated techniques that exploit the additional clinical information typically available during screening exist. To address this issue and optimally exploit this information, a machine learning-based combination framework is introduced. We have evaluated this framework on a database containing 392 patient records from suspected TB subjects prospectively recruited in Cape Town, South Africa. Each record comprised a CAD score, automatically computed from a CXR, and 12 clinical features. Comparisons with strategies relying on either CAD scores or clinical information alone were performed. Our results indicate that the combination framework outperforms the individual strategies in terms of the area under the receiving operating characteristic curve (0.84 versus 0.78 and 0.72), specificity at 95% sensitivity (49% versus 24% and 31%) and negative predictive value (98% versus 95% and 96%). Thus, it is believed that combining CAD and clinical information to estimate the risk of active disease is a promising tool for TB screening.
机译:结核病流行国家缺乏人力资源和放射学解释专业知识会削弱结核病筛查计划。计算机辅助检测(CAD)构成了胸部X光片(CXR)读取的可行选择。然而,不存在利用通常在筛选期间可用的附加临床信息的自动化技术。为了解决此问题并优化利用此信息,引入了基于机器学习的组合框架。我们在数据库中评估了该框架,该数据库包含392名患者的病历,这些病历来自预期在南非开普敦招募的可疑结核病患者。每条记录均包含根据CXR自动计算的CAD评分和12种临床特征。进行了与仅依靠CAD评分或仅依靠临床信息的策略的比较。我们的结果表明,就接收工作特征曲线下的面积(0.84对0.78和0.72),95%敏感性下的特异性(49%对24%和31%)和阴性预测值(组合)而言,组合框架的性能优于单个策略。 98%与95%和96%)。因此,据信将CAD和临床信息相结合以评估活动性疾病的风险是结核病筛查的有前途的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号