首页> 外文OA文献 >Hydride vapor phase epitaxy growth of GaN, InGaN, ScN, and ScAIN
【2h】

Hydride vapor phase epitaxy growth of GaN, InGaN, ScN, and ScAIN

机译:氢化物气相外延生长的GaN,InGaN,ScN和ScAIN

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Chemical vapor deposition (CVD); hydride vapor phase epitaxy (HVPE); gallium nitride (GaN); indium gallium nitride (InGaN); scandium nitride (ScN); scandium aluminum nitride (ScAlN); semiconductors; thin films; nanowires; III nitrides; crystal growthudud-We studied the HVPE growth of different III nitride materials. For GaN the aim was creating thick high quality films as a basis for white light LEDs, Blu-ray lasers and high power transistors. We managed to increase the deposition rate of the GaN HVPE process by a factor of 5. Also the number of crystal defects improved a 1000 times and we managed to grow 4× thicker wafers within a single process. All this was achieved by replacing the commonly used HCl process gas for Cl¬2. Using Cl2 we also managed to create InGaN films, which can be utilized to create LEDs of any color, depending on the indium content.ududUsing classic HCl-based HVPE we were able to grow thin films of ScN, a scarcely studied semiconductor with great potential for a.o. solar cell applications. As a fortunate side product of this work, we created ScAlN, a novel combination of III nitrides, in the form of nanowires.ududFinally, we achieved a better understanding of the fundamentals of the HVPE GaN process. We learned how exactly the GaN growth starts on a foreign sapphire substrate and how this process helps eliminate defects in the GaN crystalline film. Looking towards the future, we wrote a basic set of rules for scaling up the HVPE process to industrial sizes, which we verified by computer simulations.
机译:化学气相沉积(CVD);氢化物气相外延(HVPE);氮化镓(GaN);氮化铟镓(InGaN);氮化dium(ScN); nitride氮化铝(ScAlN);半导体;薄膜;纳米线; III氮化物;晶体生长 ud ud-我们研究了不同III型氮化物材料的HVPE生长。对于GaN,目标是制造厚的高质量薄膜,作为白光LED,蓝光激光器和大功率晶体管的基础。我们设法将GaN HVP​​E工艺的沉积速率提高了5倍。另外,晶体缺陷的数量也提高了1000倍,并且在一次工艺中我们设法生长了4倍厚的晶片。所有这些都是通过将常用的HCl工艺气体替换为Cl‑2来实现的。使用Cl2,我们还设法创建了InGaN膜,根据铟含量,该膜可用于制造任何颜色的LED。 ud ud使用经典的基于HCl的HVPE,我们能够生长ScN薄膜,这是一种研究很少的半导体具有巨大潜力太阳能电池应用。作为这项工作的幸运副产品,我们创建了ScAlN,它是纳米线形式的III族氮化物的新型组合。 ud ud最后,我们对HVPE GaN工艺的基本原理有了更好的了解。我们了解了GaN在异质蓝宝石衬底上开始生长的确切过程,以及该过程如何帮助消除GaN晶体膜中的缺陷。展望未来,我们编写了一套基本规则,将HVPE工艺扩大到工业规模,并通过计算机仿真验证了这些规则。

著录项

  • 作者

    Bohnen T.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号