首页> 外文OA文献 >Process discovery for industrial control system cyber attack detection
【2h】

Process discovery for industrial control system cyber attack detection

机译:用于工业控制系统网络攻击检测的过程发现

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

(ICSs) are moving from dedicatedudcommunications to Ethernet-based interconnected networks, placing them at risk of cyber attack. ICS networks are typically monitored by an (IDS), however traditional IDSs do not detect attacks which disrupt the control ow of an ICS. ICSs are unique in the repetition and restricted number of tasks that are undertaken. Thus there is the opportunity to use Process Mining, a series ofudtechniques focused on discovering, monitoring and improving business processes, to detect ICS control fow anomalies. In this paper we investigate the suitability of various process mining discovery algorithms for the task of detecting cyber attacks on ICSs by examining logs from control devices. Firstly, we identify the requirements of this unique environment, and then evaluate the appropriateness of several commonly used process discovery algorithms to satisfy these requirements. Secondly, the comparison was performed and validated using ICS logs derived from a case study, containing successful attacks on industrial control systems. Our research shows that the Inductive Miner process discovery method, without the use of noise filtering, is the most suitable for discovering a process model that is effective in detecting cyber-attacks on industrial control systems, both in processing time and accuracy.
机译:(ICS)正在从专用 udcommunicat过渡到基于以太网的互连网络,使其面临遭受网络攻击的风险。 ICS网络通常由(IDS)监视,但是传统的IDS不能检测到破坏ICS控制流的攻击。 ICS在重复执行和任务数量有限方面是独一无二的。因此,就有机会使用Process Mining(一系列致力于发现,监视和改进业务流程的技术)来检测ICS控制流异常。在本文中,我们研究了各种过程挖掘发现算法是否适合通过检查控制设备的日志来检测ICS上的网络攻击的任务。首先,我们确定这种独特环境的要求,然后评估几种常用的过程发现算法满足这些要求的适当性。其次,使用从案例研究中得出的ICS日志进行了比较和验证,该日志包含对工业控制系统的成功攻击。我们的研究表明,不使用噪声过滤的感应式矿工过程发现方法最适合发现可有效检测工业控制系统上的网络攻击的过程模型,包括处理时间和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号