首页> 外文OA文献 >Reducing driver's behavioural uncertainties using an interdisciplinary approach: Convergence of Quantified Self, Automated Vehicles, Internet of Things and Artificial Intelligence
【2h】

Reducing driver's behavioural uncertainties using an interdisciplinary approach: Convergence of Quantified Self, Automated Vehicles, Internet of Things and Artificial Intelligence

机译:使用跨学科方法减少驾驶员的行为不确定性:量化自我,自动驾驶汽车,物联网和人工智能的融合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Growing research progress in Internet of Things (IoT), automated/connected cars, Artificial Intelligence and person’s data acquisition (Quantified Self) will help to reduce behavioral uncertainties in transport and unequivocally influence future transport landscapes. This vision paper argues that by capitalizing advances in data collection and methodologies from emerging research disciplines, we could make the driver amenable to a knowable and monitorable entity, which will improve road safety. We present an interdisciplinary framework, inspired by the Safe system, to extract knowledge from the large amount of available data during driving. The limitation of our approach is discussed.
机译:物联网(IoT),自动/联网汽车,人工智能和人的数据采集(量化自我)研究的不断增长,将有助于减少运输方面的行为不确定性,并明确影响未来的运输前景。该愿景文件认为,通过利用新兴研究学科的数据收集和方法方面的进展,我们可以使驾驶员适应一个可知且可监控的实体,这将改善道路安全。我们提供了一个受安全系统启发的跨学科框架,可在驾驶过程中从大量可用数据中提取知识。讨论了我们方法的局限性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号