首页> 外文OA文献 >Vision-based simultaneous localization and mapping in changing outdoor environments
【2h】

Vision-based simultaneous localization and mapping in changing outdoor environments

机译:在变化的室外环境中基于视觉的同时定位和制图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For robots operating in outdoor environments, a number of factors, including weather, time of day, rough terrain, high speeds, and hardware limitations, make performing vision-based simultaneous localization and mapping with current techniques infeasible due to factors such as image blur and/or underexposure, especially on smaller platforms and low-cost hardware. In this paper, we present novel visual place-recognition and odometry techniques that address the challenges posed by low lighting, perceptual change, and low-cost cameras. Our primary contribution is a novel two-step algorithm that combines fast low-resolution whole image matching with a higher-resolution patch-verification step, as well as image saliency methods that simultaneously improve performance and decrease computing time. The algorithms are demonstrated using consumer cameras mounted on a small vehicle in a mixed urban and vegetated environment and a car traversing highway and suburban streets, at different times of day and night and in various weather conditions. The algorithms achieve reliable mapping over the course of a day, both when incrementally incorporating new visual scenes from different times of day into an existing map, and when using a static map comprising visual scenes captured at only one point in time. Using the two-step place-recognition process, we demonstrate for the first time single-image, error-free place recognition at recall rates above 50% across a day-night dataset without prior training or utilization of image sequences. This place-recognition performance enables topologically correct mapping across day-night cycles.
机译:对于在室外环境中运行的机器人,包括天气,一天中的时间,崎rough的地形,高速和硬件限制在内的许多因素,使得由于图像模糊和模糊等因素而无法使用当前技术执行基于视觉的同时定位和映射/或曝光不足,尤其是在较小的平台和低成本硬件上。在本文中,我们提出了新颖的视觉位置识别和测距技术,以解决低光照,感知变化和低成本相机带来的挑战。我们的主要贡献是一种新颖的两步算法,该算法将快速的低分辨率整体图像匹配与高分辨率的斑块验证步骤相结合,以及同时提高性能和减少计算时间的图像显着性方法。使用安装在小型汽车上的消费类摄像机演示了算法,该摄像机位于城市和植被混合的环境中,并且在白天和黑夜的不同时间和各种天气条件下,汽车横穿高速公路和郊区街道。当一天中不同时间将新的视觉场景递增地合并到现有地图中时,以及当使用仅包含一个时间点捕获的视觉场景的静态地图时,该算法都能在一天内完成可靠的映射。使用两步位置识别过程,我们首次展示了白天图像数据集中召回率超过50%的单图像,无错误位置识别,而无需事先训练或利用图像序列。这种位置识别性能使整个昼夜周期的拓扑正确映射成为可能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号