首页> 外文OA文献 >Identifying influential users of micro-blogging services : a dynamic action-based network approach
【2h】

Identifying influential users of micro-blogging services : a dynamic action-based network approach

机译:识别有影响力的微博服务用户:基于行动的动态网络方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we present a dynamic model to identify influential users of micro-blogging services. Micro-blogging services, such as Twitter, allow their users (twitterers) to publish tweets and choose to follow other users to receive tweets. Previous work on user influence on Twitter, concerns more on following link structure and the contents user published, seldom emphasizes the importance of interactions among users. We argue that, by emphasizing on user actions in micro-blogging platform, user influence could be measured more accurately. Since micro-blogging is a powerful social media and communication platform, identifying influential users according to user interactions has more practical meanings, e.g., advertisers may concern how many actions – buying, in this scenario – the influential users could initiate rather than how many advertisements they spread. By introducing the idea of PageRank algorithm, innovatively, we propose our model using action-based network which could capture the ability of influential users when they interacting with micro-blogging platform. Taking the evolving prosperity of micro-blogging into consideration, we extend our actionbaseduser influence model into a dynamic one, which could distinguish influential users in different time periods. Simulation results demonstrate that our models could support and give reasonable explanations for the scenarios that we considered.
机译:在本文中,我们提出了一个动态模型来识别影响力微博服务的用户。微博服务(例如Twitter)允许其用户(推特)发布推文,并选择关注其他用户来接收推文。先前有关用户对Twitter影响的工作,更关注以下链接结构和用户发布的内容,很少强调用户之间交互的重要性。我们认为,通过在微博平台上强调用户行为,可以更准确地衡量用户影响。由于微博客是功能强大的社交媒体和交流平台,因此根据用户交互来确定有影响力的用户具有更实际的意义,例如,广告商可能会关注有多少行为(在这种情况下购买)有影响力的用户可以发起而不是有多少广告他们传播。通过创新地介绍PageRank算法的思想,我们提出了一种基于动作网络的模型,该模型可以捕获有影响力的用户与微博平台进行交互时的能力。考虑到微博客的不断发展的繁荣,我们将基于动作的用户影响模型扩展为动态模型,该模型可以区分不同时期的有影响力的用户。仿真结果表明,我们的模型可以为我们考虑的场景提供支持并给出合理的解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号