首页> 外文OA文献 >A stochastic neighborhood conditional autoregressive model for spatial data
【2h】

A stochastic neighborhood conditional autoregressive model for spatial data

机译:空间数据的随机邻域条件自回归模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A spatial process observed over a lattice or a set of irregular regions is usually modeled using a conditionally autoregressive (CAR) model. The neighborhoods within a CAR model are generally formed deterministically using the inter-distances or boundaries between the regions. An extension of CAR model is proposed in this article where the selection of the neighborhood depends on unknown parameter(s). This extension is called a Stochastic Neighborhood CAR (SNCAR) model. The resulting model shows flexibility in accurately estimating covariance structures for data generated from a variety of spatial covariance models. Specific examples are illustrated using data generated from some common spatial covariance functions as well as real data concerning radioactive contamination of the soil in Switzerland after the Chernobyl accident.
机译:通常使用条件自回归(CAR)模型对在晶格或一组不规则区域上观察到的空间过程进行建模。通常使用区域之间的距离或边界确定性地形成CAR模型内的邻域。本文提出了CAR模型的扩展,其中邻域的选择取决于未知参数。此扩展称为随机邻居CAR(SNCAR)模型。所得模型显示了针对各种空间协方差模型生成的数据准确估计协方差结构的灵活性。通过使用一些常见的空间协方差函数生成的数据以及有关切尔诺贝利事故后瑞士土壤放射性污染的真实数据,举例说明了具体示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号