首页> 外文OA文献 >A data fusion approach of multiple maintenance data sources for real-world reliability modelling
【2h】

A data fusion approach of multiple maintenance data sources for real-world reliability modelling

机译:用于实际可靠性建模的多种维护数据源的数据融合方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A central tenet in the theory of reliability modelling is the quantification of the probability of asset failure. In general, reliability depends on asset age and the maintenance policy applied. Usually, failure and maintenance times are the primary inputs to reliability models. However, for many organisations, different aspects of these data are often recorded in different databases (e.g. work order notifications, event logs, condition monitoring data, and process control data). These recorded data cannot be interpreted individually, since they typically do not have all the information necessary to ascertain failure and preventive maintenance times.udThis paper presents a methodology for the extraction of failure and preventive maintenance times using commonly-available, real-world data sources. A text-mining approach is employed to extract keywords indicative of the source of the maintenance event. Using these keywords, a Naïve Bayes classifier is then applied to attribute each machine stoppage to one of two classes: failure or preventive. The accuracy of the algorithm is assessed and the classified failure time data are then presented. The applicability of the methodology is demonstrated on a maintenance data set from an Australian electricity company.
机译:可靠性建模理论的中心原则是量化资产失败的可能性。通常,可靠性取决于资产寿命和所采用的维护策略。通常,故障和维护时间是可靠性模型的主要输入。但是,对于许多组织而言,这些数据的不同方面通常记录在不同的数据库中(例如,工作指令通知,事件日志,状态监视数据和过程控制数据)。这些记录的数据无法单独解释,因为它们通常不具有确定故障和预防性维护时间所需的全部信息。 ud本文介绍了一种使用通用的实际数据提取故障和预防性维护时间的方法资料来源。采用文本挖掘方法来提取指示维护事件来源的关键字。然后,使用这些关键字,将朴素贝叶斯分类器应用于将每台机器停机归因于以下两类之一:故障或预防。评估算法的准确性,然后提供分类的故障时间数据。该方法的适用性在一家澳大利亚电力公司的维护数据集上得到了证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号