首页> 外文OA文献 >Reliable fault diagnosis for incipient low-speed bearings using fault feature analysis based on a binary bat algorithm
【2h】

Reliable fault diagnosis for incipient low-speed bearings using fault feature analysis based on a binary bat algorithm

机译:基于二进制蝙蝠算法的故障特征分析对初速低速轴承进行可靠的故障诊断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we propose a highly reliable fault diagnosis scheme for incipient low-speed rolling element bearing failures. The scheme consists of fault feature calculation, discriminative fault feature analysis, and fault classification. The proposed approach first computes wavelet-based fault features, including the respective relative wavelet packet node energy and entropy, by applying a wavelet packet transform to an incoming acoustic emission signal. The most discriminative fault features are then filtered from the originally produced feature vector by using discriminative fault feature analysis based on a binary bat algorithm (BBA). Finally, the proposed approach employs one-against-all multiclass support vector machines to identify multiple low-speed rolling element bearing defects. This study compares the proposed BBA-based dimensionality reduction scheme with four other dimensionality reduction methodologies in terms of classification performance. Experimental results show that the proposed methodology is superior to other dimensionality reduction approaches, yielding an average classification accuracy of 94.9%, 95.8%, and 98.4% under bearing rotational speeds at 20 revolutions-per-minute (RPM), 80 RPM, and 140 RPM, respectively.
机译:在本文中,我们针对初始低速滚动轴承故障提出了一种高度可靠的故障诊断方案。该方案包括故障特征计算,判别性故障特征分析和故障分类。所提出的方法首先通过将小波包变换应用于传入的声发射信号来计算基于小波的故障特征,包括各自的相对小波包节点能量和熵。然后,使用基于二进制蝙蝠算法(BBA)的判别性故障特征分析,从最初产生的特征向量中滤除最具判别性的故障特征。最后,提出的方法采用了一种针对所有多类支持向量机的方法来识别多个低速滚动轴承的缺陷。这项研究在分类性能方面将提出的基于BBA的降维方案与其他四种降维方法进行了比较。实验结果表明,所提出的方法优于其他降维方法,在20转/分钟(RPM),80 RPM和140的轴承转速下,平均分类精度分别为94.9%,95.8%和98.4% RPM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号