首页> 外文OA文献 >Learned ultra-wideband RADAR sensor model for augmented LIDAR-based traversability mapping in vegetated environments
【2h】

Learned ultra-wideband RADAR sensor model for augmented LIDAR-based traversability mapping in vegetated environments

机译:植被环境中基于LIDAR的增强可穿越性映射的学习型超宽带RADAR传感器模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In vegetated environments, reliable obstacle detection remains a challenge for state-of-the-art methods, which are usually based on geometrical representations of the environment built from LIDAR and/or visual data. udIn many cases, in practice field robots could safely traverse through vegetation, thereby avoiding costly detours. ududHowever, it is often mistakenly interpreted as an obstacle. Classifying vegetation is insufficient since there might be an obstacle hidden behind or within it. ududSome Ultra-wide band (UWB) radars can penetrate through vegetation to help distinguish actual obstacles from obstacle-free vegetation. However, these sensors provide noisy and low-accuracy data. Therefore, in this work we address the problem of reliable traversability estimation in vegetation by augmenting LIDAR-based traversability mapping with UWB radar data. ududA sensor model is learned from experimental data using a support vector machine to convert the radar data into occupancy probabilities. These are then fused with LIDAR-based traversability data. The resulting augmented traversability maps capture the fine resolution of LIDAR-based maps but clear safely traversable foliage from being interpreted as obstacle. ududWe validate the approach experimentally using sensors mounted on two different mobile robots, navigating in two different environments.
机译:在植被环境中,可靠的障碍物检测仍然是最先进方法的挑战,这些方法通常基于从LIDAR和/或视觉数据构建的环境的几何表示。 ud在许多情况下,实际上,现场机器人可以安全地穿越植被,从而避免了代价高昂的弯路。 ud ud但是,它经常被错误地解释为障碍。对植被进行分类是不够的,因为可能在其后面或内部藏有障碍物。 ud ud某些超宽带(UWB)雷达可以穿透植被,以帮助区分实际障碍物和无障碍植被。但是,这些传感器提供嘈杂的低精度数据。因此,在这项工作中,我们通过使用UWB雷达数据增强基于LIDAR的可穿越性映射来解决植被中可靠的可穿越性估计问题。 ud ud使用支持向量机从实验数据中获取传感器模型,以将雷达数据转换为占用概率。然后将这些与基于LIDAR的可遍历性数据融合在一起。生成的增强的可遍历地图捕获了基于LIDAR的地图的高分辨率,但清除了可安全遍历的叶子,不会被解释为障碍物。 ud ud我们使用安装在两个不同移动机器人上的传感器在两个不同的环境中导航,通过实验验证了该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号