首页> 外文OA文献 >Automating marine mammal detection in aerial images captured during wildlife surveys: A deep learning approach
【2h】

Automating marine mammal detection in aerial images captured during wildlife surveys: A deep learning approach

机译:在野生动植物调查期间捕获的空中图像中自动检测海洋哺乳动物:一种深度学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Aerial surveys conducted using manned or unmanned aircraft with customized camera payloads can generate a large number of images. Manual review of these images to extract data is prohibitive in terms of time and financial resources, thus providing strong incentive to automate this process using computer vision systems. There are potential applications for these automated systems in areas such as surveillance and monitoring, precision agriculture, law enforcement, asset inspection, and wildlife assessment. In this paper, we present an efficient machine learning system for automating the detection of marine species in aerialudimagery. The effectiveness of our approach can be credited to the combination of a well-suited region proposal method and the use of Deep Convolutional Neural Networks (DCNNs). In comparison to previous algorithms designed for the same purpose, we have been able to dramatically improve recall to more than 80% and improve precision to 27% by using DCNNs as the core approach.
机译:使用配备了自定义相机有效载荷的载人或无人飞机进行的航空勘测可以生成大量图像。从时间和财力上来讲,手动查看这些图像以提取数据是令人望而却步的,因此强烈鼓励使用计算机视觉系统来自动化此过程。这些自动化系统在监视和监视,精确农业,执法,资产检查和野生动植物评估等领域有潜在的应用。在本文中,我们提出了一种有效的机器学习系统,用于自动检测航拍图像中的海洋物种。我们的方法的有效性可以归功于合适的区域提议方法和深度卷积神经网络(DCNN)的结合使用。与以前为相同目的设计的算法相比,通过使用DCNN作为核心方法,我们已经能够将召回率显着提高到80%以上,并将精度提高到27%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号