首页> 外文OA文献 >Trajectory design for autonomous underwater vehicles based on ocean model predictions for feature tracking
【2h】

Trajectory design for autonomous underwater vehicles based on ocean model predictions for feature tracking

机译:基于海洋模型预测的自动水下机器人轨迹跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Trajectory design for Autonomous Underwater Vehicles (AUVs) is of great importance to the oceanographic research community. Intelligent planning is required to maneuver a vehicle to high-valued locations for data collection. We consider the use of ocean model predictions to determine the locations to be visited by an AUV, which then provides near-real time, in situ measurements back to the model to increase the skill of future predictions. The motion planning problem of steering the vehicle between the computed waypoints is not considered here. Our focus is on the algorithm to determine relevant points of interest for a chosen oceanographic feature. This represents a first approach to an end to end autonomous prediction and tasking system for aquatic, mobile sensor networks. We design a sampling plan and present experimental results with AUV retasking in the Southern California Bight (SCB) off the coast of Los Angeles.
机译:自主水下航行器(AUV)的轨迹设计对海洋学研究界非常重要。需要智能计划,才能将车辆操纵到高价值的位置进行数据收集。我们考虑使用海洋模型预测来确定AUV要访问的位置,然后AUV将近实时的原位测量结果提供给模型,以提高未来预测的技能。在此不考虑在计算出的路点之间转向车辆的运动计划问题。我们的重点是确定所选海洋学特征的相关兴趣点的算法。这代表了用于水生移动传感器网络的端到端自主预测和任务分配系统的第一种方法。我们设计了一个采样计划,并在洛杉矶海岸附近的南加利福尼亚湾(SCB)中使用AUV重新分配任务来提供实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号