首页> 外文OA文献 >Dynamic texture reconstruction from sparse codes for unusual event detection in crowded scenes
【2h】

Dynamic texture reconstruction from sparse codes for unusual event detection in crowded scenes

机译:从稀疏代码进行动态纹理重构,以在拥挤的场景中进行异常事件检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Unusual event detection in crowded scenes remains challenging because of the diversity of events and noise. In this paper, we present a novel approach for unusual event detection via sparse reconstruction of dynamic textures over an overcomplete basis set, with the dynamic texture described by local binary patterns from three orthogonal planes (LBPTOP). The overcomplete basis set is learnt from the training data where only the normal items observed. In the detection process, given a new observation, we compute the sparse coefficients using the Dantzig Selector algorithm which was proposed in the literature of compressed sensing. Then the reconstruction errors are computed, based on which we detect the abnormal items. Our application can be used to detect both local and global abnormal events. We evaluate our algorithm on UCSD Abnormality Datasets for local anomaly detection, which is shown to outperform current state-of-the-art approaches, and we also get promising results for rapid escape detection using the PETS2009 dataset.
机译:由于事件和噪声的多样性,在拥挤的场景中异常的事件检测仍然具有挑战性。在本文中,我们提出了一种新的异常事件检测方法,该方法通过在一个不完整的基础集上稀疏重建动态纹理来实现,其中动态纹理由来自三个正交平面(LBPTOP)的局部二进制模式描述。从仅观察到正常项目的训练数据中学习过完备的基础集。在检测过程中,给定一个新的观察结果,我们使用压缩感知文献中提出的Dantzig Selector算法计算稀疏系数。然后计算重建误差,并据此检测异常项。我们的应用程序可用于检测本地和全局异常事件。我们在用于局部异常检测的UCSD异常数据集上评估了我们的算法,该算法被证明优于当前的最新方法,并且使用PETS2009数据集进行快速逃生检测也获得了可喜的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号