首页> 外文OA文献 >Extraction of road lanes from high-resolution stereo aerial imagery based on maximum likelihood segmentation and texture enhancement
【2h】

Extraction of road lanes from high-resolution stereo aerial imagery based on maximum likelihood segmentation and texture enhancement

机译:基于最大似然分割和纹理增强的高分辨率立体航空影像道路车道提取

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurate road lane information is crucial for advanced vehicle navigation and safety applications. With the increasing of very high resolution (VHR) imagery of astonishing quality provided by digital airborne sources, it will greatly facilitate the data acquisition and also significantly reduce the cost of data collection and updates if the road details can be automatically extracted from the aerial images. In this paper, we proposed an effective approach to detect road lanes from aerial images with employment of the image analysis procedures. This algorithm starts with constructing the (Digital Surface Model) DSM and true orthophotos from the stereo images. Next, a maximum likelihood clustering algorithm is used to separate road from other ground objects. After the detection of road surface, the road traffic and lane lines are further detected using texture enhancement and morphological operations. Finally, the generated road network is evaluated to test the performance of the proposed approach, in which the datasets provided by Queensland department of Main Roads are used. The experiment result proves the effectiveness of our approach.
机译:准确的车道信息对于高级车辆导航和安全应用至关重要。随着数字机载信号源提供惊人质量的超高分辨率(VHR)图像的增加,如果可以从空中图像中自动提取道路细节,它将极大地方便数据采集,并显着降低数据收集和更新的成本。 。在本文中,我们提出了一种利用图像分析程序从航空图像中检测道路车道的有效方法。该算法首先从立体图像构造(数字表面模型)DSM和真实正射影像。接下来,使用最大似然聚类算法将道路与其他地面物体分开。在检测到路面之后,使用纹理增强和形态学操作进一步检测道路交通和车道线。最后,对生成的道路网络进行评估,以测试所提出方法的性能,其中使用了昆士兰州主要道路部门提供的数据集。实验结果证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号