首页> 外文OA文献 >Fault Detection, Identification and Accommodation Techniques for Unmanned Airborne Vehicles
【2h】

Fault Detection, Identification and Accommodation Techniques for Unmanned Airborne Vehicles

机译:无人机故障检测,识别与处理技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Unmanned Airborne Vehicles (UAV) are assuming prominent roles in both the commercial and military aerospace industries. The promise of reduced costs and reduced risk to human life is one of their major attractions, however these low-cost systems are yet to gain acceptance as a safe alternate to manned solutions. The absence of a thinking, observing, reacting and decision making pilot reduces the UAVs capability of managing adverse situations such as faults and failures.ududThis paper presents a review of techniques that can be used to track the system health onboard a UAV. The review is based on a year long literature review aimed at identifying approaches suitable for combating the low reliability and high attrition rates of today’s UAV. This research primarily focuses on real-time, onboard implementations for generating accurate estimations of aircraft health for fault accommodation and mission management (change of mission objectives due to deterioration in aircraft health).ududThe major task of such systems is the process of detection, identification and accommodation of faults and failures (FDIA). A number of approaches exist, of which model-based techniques show particular promise. Model-based approaches use analytical redundancy to generate residuals for the aircraft parameters that can be used to indicate the occurrence of a fault or failure. Actions such as switching between redundant components or modifying control laws can then be taken to accommodate the fault.ududThe paper further describes recent work in evaluating neural-network approaches to sensor failure detection and identification (SFDI). The results of simulations with a variety of sensor failures, based on a Matlab non-linear aircraft model are presented and discussed. Suggestions for improvements are made based on the limitations of this neural network approach with the aim of including a broader range of failures, while still maintaining an accurate model in the presence of these failures.
机译:无人驾驶飞机(UAV)在商业和军事航空航天工业中都扮演着重要角色。降低成本和降低人类生命风险的承诺是其主要吸引力之一,但是,这些低成本系统尚未作为有人为解决方案的安全替代品而获得认可。缺乏思想,观察,做出反应和做出决策的飞行员会降低无人机管理不良情况(如故障和失败)的能力。 ud ud本文对可用于追踪无人机机载系统健康状况的技术进行了综述。这篇综述是基于长达一年的文献综述,旨在确定适合于应对当今无人机的低可靠性和高损耗率的方法。这项研究主要集中在实时机载实施上,以生成准确的航空器健康估计,以进行故障处理和任务管理(由于航空器健康状况恶化而导致的任务目标变更)。 ud ud此类系统的主要任务是故障,故障的检测,识别和处理(FDIA)。存在许多方法,其中基于模型的技术显示出特殊的前景。基于模型的方法使用分析冗余为飞机参数生成残差,这些残差可用于指示故障或失败的发生。然后可以采取诸如在冗余组件之间切换或修改控制规则之类的措施来适应故障。 ud ud本文进一步描述了评估传感器故障检测和识别(SFDI)的神经网络方法的最新工作。提出并讨论了基于Matlab非线性飞机模型的各种传感器故障的仿真结果。基于这种神经网络方法的局限性提出了改进建议,目的是包括更大范围的故障,同时在存在这些故障的情况下仍保持准确的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号