首页> 外文OA文献 >Experimental studies of wireless communication and GNSS kinematic positioning performance in high-mobility vehicle environments
【2h】

Experimental studies of wireless communication and GNSS kinematic positioning performance in high-mobility vehicle environments

机译:高机动车辆环境中无线通信和GNSS运动定位性能的实验研究

摘要

In order to support intelligent transportation system (ITS) road safety applications such as collision avoidance, lane departure warnings and lane keeping, Global Navigation Satellite Systems (GNSS) based vehicle positioning system has to provide lane-level (0.5 to 1 m) or even in-lane-level (0.1 to 0.3 m) accurate and reliable positioning information to vehicle users. However, current vehicle navigation systems equipped with a single frequency GPS receiver can only provide road-level accuracy at 5-10 meters. The positioning accuracy can be improved to sub-meter or higher with the augmented GNSS techniques such as Real Time Kinematic (RTK) and Precise Point Positioning (PPP) which have been traditionally used in land surveying and or in slowly moving environment. In these techniques, GNSS corrections data generated from a local or regional or global network of GNSS ground stations are broadcast to the users via various communication data links, mostly 3G cellular networks and communication satellites.ududThis research aimed to investigate the precise positioning system performances when operating in the high mobility environments. This involves evaluation of the performances of both RTK and PPP techniques using: i) the state-of-art dual frequency GPS receiver; and ii) low-cost single frequency GNSS receiver.ududAdditionally, this research evaluates the effectiveness of several operational strategies in reducing the load on data communication networks due to correction data transmission, which may be problematic for the future wide-area ITS services deployment. These strategies include the use of different data transmission protocols, different correction data format standards, and correction data transmission at the less-frequent interval.ududA series of field experiments were designed and conducted for each research task.ududFirstly, the performances of RTK and PPP techniques were evaluated in both static and kinematic (highway with speed exceed 80km) experiments. RTK solutions achieved the RMS precision of 0.09 to 0.2 meter accuracy in static and 0.2 to 0.3 meter in kinematic tests, while PPP reported 0.5 to 1.5 meters in static and 1 to 1.8 meter in kinematic tests by using the RTKlib software. These RMS precision values could be further improved if the better RTK and PPP algorithms are adopted. The tests results also showed that RTK may be more suitable in the lane-level accuracy vehicle positioning. The professional grade (dual frequency) and mass-market grade (single frequency) GNSS receivers were tested for their performance using RTK in static and kinematic modes. The analysis has shown that mass-market grade receivers provide the good solution continuity, although the overall positioning accuracy is worse than the professional grade receivers.ududIn an attempt to reduce the load on data communication network, we firstly evaluate the use of different correction data format standards, namely RTCM version 2.x and RTCM version 3.0 format. A 24 hours transmission test was conducted to compare the network throughput. The results have shown that 66% of network throughput reduction can be achieved by using the newer RTCM version 3.0, comparing to the older RTCM version 2.x format. Secondly, experiments were conducted to examine the use of two data transmission protocols, TCP and UDP, for correction data transmission through the Telstra 3G cellular network. The performance of each transmission method was analysed in terms of packet transmission latency, packet dropout, packet throughput, packet retransmission rate etc. The overall network throughput and latency of UDP data transmission are 76.5% and 83.6% of TCP data transmission, while the overall accuracy of positioning solutions remains in the same level. Additionally, due to the nature of UDP transmission, it is also found that 0.17% of UDP packets were lost during the kinematic tests, but this loss doesn't lead to significant reduction of the quality of positioning results. The experimental results from the static and the kinematic field tests have also shown that the mobile network communication may be blocked for a couple of seconds, but the positioning solutions can be kept at the required accuracy level by setting of the Age of Differential. Finally, we investigate the effects of using less-frequent correction data (transmitted at 1, 5, 10, 15, 20, 30 and 60 seconds interval) on the precise positioning system. As the time interval increasing, the percentage of ambiguity fixed solutions gradually decreases, while the positioning error increases from 0.1 to 0.5 meter. The results showed the position accuracy could still be kept at the in-lane-level (0.1 to 0.3 m) when using up to 20 seconds interval correction data transmission.
机译:为了支持智能交通系统(ITS)的道路安全应用,例如避免碰撞,车道偏离警告和车道保持,基于全球导航卫星系统(GNSS)的车辆定位系统必须提供车道高度(0.5到1 m)甚至是车内高度(0.1至0.3 m)的准确和可靠的定位信息给车辆用户。但是,当前配备单频GPS接收器的车辆导航系统只能提供5-10米的道路水平精度。使用增强的GNSS技术(例如实时运动(RTK)和精确点定位(PPP))可以将定位精度提高到亚米或更高,这些技术通常在土地测量和/或缓慢移动的环境中使用。在这些技术中,将从GNSS地面站的本地或区域或全球网络生成的GNSS校正数据通过各种通信数据链路(主要是3G蜂窝网络和通信卫星)广播给用户。 ud ud这项研究旨在研究精确定位在高移动性环境中运行时的系统性能。这涉及使用以下方法评估RTK和PP​​P技术的性能:i)最新的双频GPS接收机; ii)低成本单频GNSS接收器。 ud ud此外,本研究评估了几种操作策略在减少由于校正数据传输而导致的数据通信网络负载方面的有效性,这可能对未来的广域ITS造成问题服务部署。这些策略包括使用不同的数据传输协议,不同的校正数据格式标准以及以较少的频率间隔传输校正数据。 ud ud针对每个研究任务设计并进行了一系列现场实验。 ud ud首先,在静态和运动学(速度超过80 km的高速公路)实验中评估了RTK和PP​​P技术的性能。通过使用RTKlib软件,RTK解决方案在静态测试中的RMS精度为0.09至0.2米,在运动测试中的精度为0.2至0.3米,而PPP报告通过静态测试在运动测试中为0.5至1.5米,在运动测试为1至1.8米。如果采用更好的RTK和PP​​P算法,则可以进一步提高这些RMS精度值。测试结果还表明,RTK可能更适合车道级精度的车辆定位。使用RTK在静态和运动学模式下对专业级(双频)和大众市场级(单频)GNSS接收机的性能进行了测试。分析表明,尽管整体定位精度比专业级接收器差,但大众市场级接收器提供了良好的解决方案连续性。 ud ud为了减少数据通信网络的负载,我们首先评估了不同的校正数据格式标准,即RTCM 2.x版和RTCM 3.0版格式。进行了24小时的传输测试以比较网络吞吐量。结果表明,与较旧的RTCM版本2.x相比,使用较新的RTCM版本3.0可以实现66%的网络吞吐量降低。其次,进行了实验以检查使用两种数据传输协议TCP和UDP来校正通过Telstra 3G蜂窝网络进行的数据传输。从数据包传输延迟,数据包丢失,数据包吞吐量,数据包重传率等方面分析了每种传输方法的性能。UDP数据传输的总体网络吞吐量和延迟分别为TCP数据传输的76.5%和83.6%,而总体定位解决方案的精度保持在同一水平。此外,由于UDP传输的性质,还发现在运动学测试期间丢失了0.17%的UDP数据包,但是这种丢失并不会导致定位结果质量的显着降低。静态和运动学现场测试的实验结果还表明,移动网络通信可能会阻塞几秒钟,但可以通过设置“差分年龄”将定位解决方案保持在所需的精度水平。最后,我们研究了使用频率较低的校正数据(以1、5、10、15、20、30和60秒的间隔发送)对精确定位系统的影响。随着时间间隔的增加,歧义固定解的百分比逐渐减小,而定位误差从0.1米增加到0.5米。结果表明,在使用长达20秒的间隔校正数据传输时,位置精度仍可以保持在车道内水平(0.1至0.3 m)。

著录项

  • 作者

    Qu Ming;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号