首页> 外文OA文献 >Web-Based Query Translation for English-Chinese CLIR
【2h】

Web-Based Query Translation for English-Chinese CLIR

机译:基于Web的英汉CLIR查询翻译

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dictionary-based translation is a traditional approach in use by cross-languageudinformation retrieval systems. However, significant performance degradation isudoften observed when queries contain words that do not appear in the dictionary.udThis is called the Out of Vocabulary (OOV) problem. In recent years, Web miningudhas been shown to be one of the effective approaches for solving this problem.udHowever, the questions of how to extract Multiword Lexical Units (MLUs) fromudthe Web content and how to select the correct translations from the extractedudcandidate MLUs are still two difficult problems in Web mining based automatedudtranslation approaches.udMost statistical approaches to MLU extraction rely on statistical informationudextracted from huge corpora. In the case of using Web mining techniques forudautomated translations, these approaches do not perform well because the size ofudthe corpus is usually too small and statistical approaches that rely on a large sampleudcan become unreliable. In this paper, we present a new Chinese term measurementudand a new Chinese MLU extraction process that work well on small corpora. Weudalso present our approach to the selection of MLUs in a more accurate manner. Ourudexperiments show marked improvement in translation accuracy over otherudcommonly used approaches.
机译:基于字典的翻译是跨语言 udinformation检索系统使用的传统方法。但是,查询在字典中包含未出现的单词时,通常会导致性能显着下降。 ud这称为词汇不足(OOV)问题。近年来,Web挖掘已被证明是解决此问题的有效方法之一。 ud但是,如何从Web内容中提取多词词法单元(MLU)以及如何从中选择正确的翻译的问题在基于Web挖掘的自动 udtranslation方法中,提取的 udcandidate MLU仍然是两个难题。 ud大多数的MLU提取统计方法都依赖于从庞大的语料库中提取的统计信息。在使用Web挖掘技术进行自动翻译的情况下,这些方法效果不佳,因为语料库的大小通常太小,依赖大量样本的统计方法可能变得不可靠。在本文中,我们提出了一种适用于小型语料库的新的中文术语测量 ud和新的中文MLU提取过程。我们还将以更准确的方式介绍选择MLU的方法。我们的 udexperiments显示,与其他 udm常用方法相比,翻译准确性有了显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号