首页> 外文OA文献 >Adaptive wing/aerofoil design optimisation using MOEA coupled to uncertainty design method
【2h】

Adaptive wing/aerofoil design optimisation using MOEA coupled to uncertainty design method

机译:使用MOEA和不确定性设计方法的自适应机翼/机翼设计优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The use of adaptive wing/aerofoil designs is being considered as promising techniques in aeronautic/aerospace since they can reduce aircraft emissions, improve aerodynamic performance of manned or unmanned aircraft. The paper investigates the robust design and optimisation for one type of adaptive techniques; Active Flow Control (AFC) bump at transonic flow conditions on a Natural Laminar Flow (NLF) aerofoil designed to increase aerodynamic efficiency (especially high lift to drag ratio). The concept of using Shock Control Bump (SCB) is to control supersonic flow on the suction/pressure side of NLF aerofoil: RAE 5243 that leads to delaying shock occurrence or weakening its strength. Such AFC technique reduces total drag at transonic speeds due to reduction of wave drag. The location of Boundary Layer Transition (BLT) can influence the position the supersonic shock occurrence. The BLT position is an uncertainty in aerodynamic design due to the many factors, such as surface contamination or surface erosion. The paper studies the SCB shape design optimisation using robust Evolutionary Algorithms (EAs) with uncertainty in BLT positions. The optimisation method is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing and asynchronous evaluation. Two test cases are conducted; the first test assumes the BLT is at 45% of chord from the leading edge and the second test considers robust design optimisation for SCB at the variability of BLT positions and lift coefficient. Numerical result shows that the optimisation method coupled to uncertainty design techniques produces Pareto optimal SCB shapes which have low sensitivity and high aerodynamic performance while having significant total drag reduction.
机译:自适应机翼/机翼设计的使用被认为是航空/航天领域中的有前途的技术,因为它们可以减少飞机排放物,提高有人或无人飞机的空气动力性能。本文研究了一种自适应技术的鲁棒设计和优化。跨层流条件下的自然层流(NLF)翼型上的主动流控制(AFC)凸块设计用于提高空气动力学效率(尤其是高升阻比)。使用冲击控制凸点(SCB)的概念是控制NLF翼型:RAE 5243的吸力/压力侧的超声速流动,这会导致冲击发生延迟或削弱其强度。由于减小了波阻力,因此这种AFC技术减小了跨音速下的总阻力。边界层过渡(BLT)的位置会影响超音速冲击发生的位置。由于许多因素(例如表面污染或表面腐蚀),BLT的位置在空气动力学设计中是不确定的。本文研究了使用BLT位置不确定的鲁棒进化算法(EA)进行的SCB形状设计优化。该优化方法基于规范的进化策略,并结合了分层拓扑,并行计算和异步评估的概念。进行两个测试案例;第一个测试假设BLT距前端的弦长为45%,第二个测试考虑在BLT位置和升力系数的变化情况下针对SCB进行稳健的设计优化。数值结果表明,该优化方法与不确定性设计技术相结合,产生了帕累托最优SCB形状,该形状具有较低的灵敏度和较高的空气动力学性能,同时具有明显的总减阻效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号