首页> 外文OA文献 >Development of an integrated model for assessment of operational risks in rail track
【2h】

Development of an integrated model for assessment of operational risks in rail track

机译:开发用于评估铁路运营风险的综合模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years there has been continuous increase of axle loads, tonnage, train speed, and train length which has increased both the productivity in the rail sector and the risk of rail breaks and derailments. Rail operating risks have been increasing due to the increased number of axle passes, sharper curves, wear-out of rails and wheels, inadequate rail-wheel grinding and poor lubrication and maintenance. Rolling contact fatigue (RCF) and wear are significant problems for railway companies. In 2000, the Hatfield accident in the UK killed 4 people, injured 34 people and led to the cost of £ 733 million (AUD$ 1.73 billion) for repairs and compensation. In 1977, the Granville train disaster in Australia killed 83 people and injured 213 people. These accidents were related to rolling contact fatigue, wear and poor maintenance.Studies on rail wear and lubrication, rolling contact fatigue and inspection and rail grinding analyse and assess the asset condition to take corrective and preventive measures for maintaining reliability and safety of rail track. Such measures can reduce the operational risks and the costs by early detection and prevention of rail failures, rail breaks and derailments. Studies have so far been carried out in isolation and have failed to provide a practical solution to a complex problem such as rail-wheel wearfatigue-lubrication-grinding-inspection for cost effective maintenance decisions. Therefore, there is a need to develop integrated economic models to predict expected total cost and operational risks and to make informed decisions on rail track maintenance.The major challenges to rail infrastructure and rolling stock operators are to:1. keep rolling contact fatigue and rail-wheel wear under controllable limits,2. strike a balance between rail grinding and rail lubrication, and3. take commercial decisions on grinding intervals, inspection intervals, lubrication placements, preventive maintenance and rail replacements.This research addresses the development and analysis of an integrated model for assessment of operational risks in rail track. Most significantly, it deals with problems associated with higher axle loads; wear; rolling contact fatigue; rail defects leading to early rail replacements; and rail breaks and derailments. The contribution of this research includes the development of:failure models with non-homogenous Poisson process and estimation of parameters.economic models and analysis of costs due to grinding, risks, downtime, inspection and replacement of rails for 23, 12, 18 and 9 Million Gross Tonnes (MGT) of traffic through curve radius 0-300, 300-450, 450-600 and 600-800 m; and application of results from this investigation to maintenance and replacement decisions of rails. Cost savings per meter per year are:* 4.58% with 12 MGT intervals compared to 23 MGT intervals for 0-300 m* 9.63% with 12 MGT intervals compared to 23 MGT intervals for 300-450 m* 15.80% with 12 MGT intervals compared to 23 MGT intervals for 450-600 m* 12.29% with 12 MGT intervals compared to 23 MGT intervals for 600-800 m. a lubrication model for optimal lubrication strategies. It includes modelling and economic analysis of rail wear, rail-wheel lubrication for various types of lubricators. Cost effectiveness of the lubricator is modelled, considering the number of curves and the total length of curves it lubricates. Cost saving per lubricator per year for the same curve length and under the same curve radius is:* 17% for solar wayside lubricators compared to standard wayside lubricators. simulation model for analysis of lubrication effectiveness. Cost savings per meter per year for:* 12 MGT grinding interval is 3 times for 0-450 m and 2 times for 450-600 m curve radius with lubrication compared to without lubrication.* 23 MGT grinding interval is 7 times for 0-450 m and 4 times for 450-600 m curve radius with lubrication compared to without lubrication. a relative performance model, total curve and segment model. an inspection model for cost effective rail inspection intervals. Cost savings per year for same track length, curves and MGT of traffic:* 27% of total maintenance costs with two inspections, compared to one inspection considering risk due to rail breaks and derailments. a risk priority number by combining probability of occurrence, probability of detection and consequences due to rail defects, rail breaks and derailments. integrated model combining decisions on grinding interval, lubrication strategies, inspection intervals, rectification strategies and replacement of rails.Cost saving per meter per year for 12 MGT is:* 5.41% of total maintenance costs with two inspections, compared to one inspection considering risk due to rail breaks and derailments.* 45.06% of total maintenance costs with lubrication for two inspections, compared to without lubrication.Cost saving per meter per year for 23 MGT is:* 5.61% of total maintenance costs with two inspections, compared to one inspection considering risk due to rail breaks and derailments.* 68.68% of total maintenance costs with lubrication for two inspections, per year compared to no lubrication.The thesis concludes with a brief summary of the contributions that it makes to this field and the scope for future research in wear-fatigue-lubrication-grinding-inspection for maintenance of rail infrastructure.
机译:近年来,车轴载荷,吨位,列车速度和列车长度不断增加,这既增加了铁路部门的生产率,也增加了铁路断裂和脱轨的风险。由于轴的通过次数增加,曲线变陡,轨道和轮的磨损,轨道轮的磨削不足以及润滑和维护不良,轨道运行风险一直在增加。滚动接触疲劳(RCF)和磨损是铁路公司的重大问题。 2000年,英国的哈特菲尔德事故造成4人死亡,34人受伤,导致修理和赔偿费用7.33亿英镑(17.3亿澳元)。 1977年,澳大利亚的格兰维尔火车灾难造成83人死亡,213人受伤。这些事故与滚动接触疲劳,磨损和维护不良有关。轨道磨损和润滑,滚动接触疲劳以及检查和轨道磨削的研究分析和评估资产状况,以采取纠正和预防措施以维护轨道的可靠性和安全性。这些措施可以通过及早发现和预防铁路故障,铁路断裂和脱轨来降低运营风险和成本。迄今为止,研究是孤立进行的,但未能为诸如轮毂磨损,润滑,磨削检查之类的复杂问题提供实用的解决方案,从而降低了维护成本。因此,需要开发综合经济模型以预测预期的总成本和运营风险,并就铁轨维护做出明智的决策。铁路基础设施和机车车辆运营商面临的主要挑战是:1。保持滚动接触疲劳和车轮磨损在可控制的范围内; 2。在钢轨磨削和钢轨润滑之间取得平衡,并且3。在磨削间隔,检查间隔,润滑位置,预防性维护和轨道更换方面做出商业决策。本研究致力于开发和分析用于评估轨道运行风险的集成模型。最重要的是,它解决了与更高轴负载相关的问题;穿;滚动接触疲劳铁路缺陷导致铁路早期更换;以及铁路中断和脱轨。这项研究的贡献包括开发了具有非均质Poisson过程的故障模型和参数估计功能,经济模型以及23、12、18和9的钢轨因磨削,风险,停机,检查和更换而产生的成本分析通过弯道半径0-300、300-450、450-600和600-800 m的百万总吨(MGT);并将调查结果应用于铁轨的维护和更换决策。每年每米节省的成本为:* 4.58%的间隔为12个MGT,而0-300 m为23个MGT间隔* 9.63%的间隔为12个MGT,而300-450 m *为23 MGT间隔* 15.80%,12个MGT间隔450-600 m *至23 MGT间隔为12.29%,间隔为12 MGT,而600-800 m为23 MGT间隔。最佳润滑策略的润滑模型。它包括轨道磨损的建模和经济分析,各种类型润滑器的轨道轮润滑。考虑到润滑曲线的数量和润滑曲线的总长度,对润滑器的成本效益进行了建模。在相同的曲线长度和相同的曲线半径下,每个润滑器每年节省的成本为:*与标准路旁润滑器相比,太阳能路旁润滑器可节省17%。用于润滑效果分析的仿真模型。每年每米节省的成本:*与未润滑相比,润滑时0-450 m的12 MGT磨削间隔是3倍,弯曲半径450-600 m时的2磨削间隔是* 0-450时23 MGT磨削间隔是7倍。与不润滑相比,润滑半径为450-600 m的曲线的m和4倍。相对性能模型,总曲线和线段模型。具有成本效益的铁路检查间隔的检查模型。在相同的轨道长度,弯道和MGT情况下,每年节省的成本:*两次检查相比占总维护成本的27%,相比之下,一次检查考虑到铁路断裂和脱轨带来的风险。通过组合发生概率,检测概率和因铁路缺陷,铁路折损和脱轨而造成的后果的风险优先级数字。结合了磨削间隔,润滑策略,检查间隔,矫正策略和导轨更换的决策的集成模型.12 MGT每年每米节省的成本为:*两次检查占总维护成本的5.41%,相比之下,一项检查考虑了潜在风险*两次检查带润滑的总维护成本的45.06%,而不润滑的情况下.23 MGT每年每米节省的成本为:*两次检查带总维护成本的5.61%,与考虑到钢轨断裂和脱轨风险的一次检查相比。*每年两次润滑的维修费用占总维护成本的68.68%,与没有润滑的情况相比。本文最后总结了其在该领域的贡献以及铁路基础设施维护的磨损,疲劳,磨削检查的未来研究范围。

著录项

  • 作者

    Reddy Venkatarami;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号