首页> 外文OA文献 >The backfilled GEI : a cross-capture modality gaitudfeature for frontal and side-view gait recognition
【2h】

The backfilled GEI : a cross-capture modality gaitudfeature for frontal and side-view gait recognition

机译:填写完整的GEI:跨捕获模式步态正面和侧面步态识别功能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we propose a novel direction for gait recognition research by proposing a new capture-modality independent, appearance-based feature which we call the Back-filled Gait Energy Image (BGEI). It can can be constructed from both frontal depth images, as well as the more commonly used side-view silhouettes, allowing the feature to be applied across these two differing capturing systems using the same enrolled database. To evaluate this new feature, a frontally captured depth-based gait dataset was created containing 37 unique subjects, a subset of which also contained sequences captured from the side. The results demonstrate that the BGEI can effectively be used to identify subjects through their gait across these two differing input devices, achieving rank-1 match rate of 100%, in our experiments. We also compare the BGEI against the GEI and GEV in their respective domains, using the CASIA dataset and our depth dataset, showing that it compares favourably against them. The experiments conducted were performed using a sparse representation based classifier with a locally discriminating input feature space, which show significant improvement in performance over other classifiersudused in gait recognition literature, achieving state of the art results with the GEI on the CASIA dataset.
机译:在本文中,我们通过提出一种新的与捕获方式无关的,基于外观的功能,将其称为步态填充能量图像(BGEI),为步态识别研究提出了一个新的方向。它既可以由正面深度图像,也可以由更常用的侧视图轮廓构成,从而允许使用同一注册数据库将特征应用于这两个不同的捕获系统。为了评估此新功能,创建了一个正面捕获的基于深度的步态数据集,其中包含37个独特的对象,其中的一个子集还包含从侧面捕获的序列。结果表明,在我们的实验中,BGEI可以有效地通过他们在这两个不同输入设备上的步态来识别对象,从而达到100%的1级匹配率。我们还使用CASIA数据集和深度数据集将BGEI与各自领域中的GEI和GEV进行了比较,显示出BGEI与它们之间的优势。使用基于稀疏表示的分类器和局部区分的输入特征空间进行了实验,与基于步态识别文献的其他分类器相比,该分类器的性能有了显着提高,在CASIA数据集上使用GEI达到了最先进的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号