首页> 外文OA文献 >Clustering XML documents using frequent subtrees
【2h】

Clustering XML documents using frequent subtrees

机译:使用频繁的子树对XML文档进行集群

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents an experimental study conducted over the INEX 2008 Document Mining Challenge corpus using both the structure and the content of XML documents for clustering them. The concise common substructures known as the closed frequent subtrees are generated using the structural information of the XML documents. The closed frequent subtrees are then used to extract the constrained content from the documents. A matrix containing the term distribution of the documents in the dataset is developed using the extracted constrained content. The k-way clustering algorithm is applied to the matrix to obtain the required clusters. In spite of the large number of documents in the INEX 2008 Wikipedia dataset, the proposed frequent subtree-based clustering approach was successful in clustering the documents. This approach significantly reduces the dimensionality of the terms used for clustering without much loss in accuracy.
机译:本文介绍了一项针对INEX 2008 Document Mining Challenge语料库进行的实验研究,使用XML文档的结构和内容对其进行了聚类。使用XML文档的结构信息生成称为闭合频繁子树的简洁通用子结构。然后,使用封闭的频繁子树从文档中提取受约束的内容。使用提取的受约束内容来开发一个包含数据集中文档的术语分布的矩阵。将k向聚类算法应用于矩阵以获得所需的聚类。尽管INEX 2008 Wikipedia数据集中有大量文档,但所建议的基于子树的频繁聚类方法成功地对文档进行了聚类。这种方法大大降低了用于聚类的术语的维数,而没有太多的准确性损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号