首页> 外文OA文献 >Grammar-based Generation of Stochastic Local Search Heuristics Through Automatic Algorithm Configuration Tools
【2h】

Grammar-based Generation of Stochastic Local Search Heuristics Through Automatic Algorithm Configuration Tools

机译:通过自动算法配置工具基于语法的随机局部搜索启发式生成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Several grammar-based genetic programming algorithms have been proposed in the literature to automatically generate heuristics for hard optimization problems. These approaches specify the algorithmic building blocks and the way in which they can be combined in a grammar; the best heuristic for the problem being tackled is found by an evolutionary algorithm that searches in the algorithm design space defined by the grammar. In this work, we propose a novel representation of the grammar by a sequence of categorical, integer, and real-valued parameters. We then use a tool for automatic algorithm configuration to search for the best algorithm for the problem at hand. Our experimental evaluation on the one-dimensional bin packing problem and the permutation flowshop problem with weighted tardiness objective shows that the proposed approach produces better algorithms than grammatical evolution, a well-established variant of grammar-based genetic programming. The reasons behind such improvement lie both in the representation proposed and in the method used to search the algorithm design space. © 2014 Elsevier Ltd.
机译:文献中已经提出了几种基于语法的遗传规划算法,以针对硬优化问题自动生成启发式算法。这些方法指定了算法的构建块以及它们在语法中的组合方式。进化算法在语法定义的算法设计空间中进行搜索,从而找到了解决问题的最佳方法。在这项工作中,我们通过分类,整数和实数值参数的序列提出了一种新颖的语法表示形式。然后,我们使用一种用于自动算法配置的工具来搜索针对当前问题的最佳算法。我们对一维箱式装箱问题和带有加权迟滞目标的置换流水车间问题的实验评估表明,所提出的方法比基于语法的遗传编程的完善的语法演化算法产生了更好的算法。进行此类改进的原因不仅在于提出的表示形式,还在于用于搜索算法设计空间的方法。 ©2014爱思唯尔有限公司。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号