首页> 外文OA文献 >Fast compression of large Semantic Web data using X10.
【2h】

Fast compression of large Semantic Web data using X10.

机译:使用X10快速压缩大型语义Web数据。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Semantic Web comprises enormous volumes of semi-structured data elements. For interoperability, these elements are represented by long strings. Such representations are not efficient for the purposes of applications that perform computations over large volumes of such information. A common approach to alleviate this problem is through the use of compression methods that produce more compact representations of the data. The use of dictionary encoding is particularly prevalent in Semantic Web database systems for this purpose. However, centralized implementations present performance bottlenecks, giving rise to the need for scalable, efficient distributed encoding schemes. In this paper, we propose an efficient algorithm for fast encoding large Semantic Web data. Specially, we present the detailed implementation of our approach based on the state-of-art asynchronous partitioned global address space (APGAS) parallel programming model. We evaluate performance on a cluster of up to 384 cores and datasets of up to 11 billion triples (1.9 TB). Compared to the state-of-art approach, we demonstrate a speed-up of 2:6 7:4 and excellent scalability. In the meantime, these results also illustrate the significant potential of the APGAS model for efficient implementation of dictionary encoding and contributes to the engineering of more efficient, larger scale Semantic Web applications.
机译:语义网包含大量的半结构化数据元素。为了实现互操作性,这些元素用长字符串表示。对于在大量此类信息上执行计算的应用程序而言,这种表示方式效率不高。缓解此问题的常用方法是通过使用压缩方法来产生更紧凑的数据表示形式。为此,在语义Web数据库系统中特别流行使用字典编码。但是,集中式实现存在性能瓶颈,因此需要可伸缩,有效的分布式编码方案。在本文中,我们提出了一种快速编码大型语义Web数据的有效算法。特别是,我们基于最新的异步分区全局地址空间(APGAS)并行编程模型,介绍了我们方法的详细实现。我们在最多384个核心的集群和最多110亿个三元组(1.9 TB)的数据集上评估性能。与最新方法相比,我们展示了2:6 7:4的加速和出色的可伸缩性。同时,这些结果也说明了APGAS模型在有效实施字典编码方面的巨大潜力,并有助于设计更高效,更大规模的语义Web应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号