首页> 外文OA文献 >Automated on-line fault prognosis for wind turbine pitch systems using supervisory control and data acquisition.ud
【2h】

Automated on-line fault prognosis for wind turbine pitch systems using supervisory control and data acquisition.ud

机译:使用监督控制和数据采集,对风力发电机变桨系统进行自动在线故障诊断。 ud

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Current wind turbine (WT) studies focus on improving their reliability and reducing the cost of energy, particularly when WTs are operated offshore. A supervisory control and data acquisition (SCADA) system is a standard installation on larger WTs, monitoring all major WT sub-assemblies and providing important information. Ideally, a WT's health condition or state of the components can be deduced through rigorous analysis of SCADA data. Several programmes have been made for that purposes; however, the resulting cost savings are limited because of the data complexity and relatively low number of failures that can be easily detected in early stages. This study proposes a new method for analysing WT SCADA data by using an a priori knowledge-based adaptive neuro-fuzzy inference system with the aim to achieve automated detection of significant pitch faults. The proposed approach has been applied to the pitch data of two different designs of 26 variable pitch, variable speed and 22 variable pitch, fixed speed WTs, with two different types of SCADA system, demonstrating the adaptability of the approach for application to a variety of techniques. Results are evaluated using confusion matrix analysis and a comparison study of the two tests is addressed to draw conclusions.
机译:当前的风力涡轮机(WT)研究致力于提高其可靠性并降低能源成本,尤其是当WTs在海上运行时。监督控制和数据采集(SCADA)系统是大型WT上的标准安装,可监视所有主要WT子组件并提供重要信息。理想情况下,可以通过对SCADA数据进行严格分析来推断WT的健康状况或组件状态。为此目的已经制定了几个方案。但是,由于数据的复杂性以及可以在早期阶段轻松检测到的故障数量相对较少,因此节省的成本有限。这项研究提出了一种通过使用基于先验知识的自适应神经模糊推理系统来分析WT SCADA数据的新方法,旨在实现对重大俯仰故障的自动检测。所提出的方法已经应用于具有两种不同类型的SCADA系统的26个可变螺距,可变速度和22个可变螺距,固定速度WT的两种不同设计的螺距数据,证明了该方法适用于各种技术。使用混淆矩阵分析对结果进行评估,并对两个测试进行比较研究以得出结论。

著录项

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号