首页> 外文OA文献 >A study of Gaussian mixture models of color and texture features for image classification and segmentation.
【2h】

A study of Gaussian mixture models of color and texture features for image classification and segmentation.

机译:对颜色和纹理特征的高斯混合模型进行图像分类和分割的研究。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The aims of this paper are two-fold: to define Gaussian mixture models (GMMs) of colored texture on several feature spaces and to compare the performance of these models in various classification tasks, both with each other and with other models popular in the literature. We construct GMMs over a variety of different color and texture feature spaces, with a view to the retrieval of textured color images from databases. We compare supervised classification results for different choices of color and texture features using the Vistex database, and explore the best set of features and the best GMM configuration for this task. In addition we introduce several methods for combining the ‘color’ and ‘structure’ information in order to improve the classification performances. We then apply the resulting models to the classification of texture databases and to the classification of man-made and natural areas in aerial images. We compare the GMM model with other models in the literature, and show an overall improvement in performance.
机译:本文的目的有两个:在几个特征空间上定义彩色纹理的高斯混合模型(GMM),并比较这些模型在各种分类任务中的性能,彼此之间以及与文献中流行的其他模型。为了在数据库中检索带纹理的彩色图像,我们在各种不同的颜色和纹理特征空间上构造了GMM。我们使用Vistex数据库比较不同颜色和纹理特征选择的监督分类结果,并为此任务探索最佳特征集和最佳GMM配置。此外,我们介绍了几种组合“颜色”和“结构”信息的方法,以提高分类性能。然后,我们将所得模型应用于纹理数据库的分类以及航空图像中人造和自然区域的分类。我们将GMM模型与文献中的其他模型进行比较,并显示出整体性能的提高。

著录项

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号