首页> 外文OA文献 >Automated wind turbine pitch fault prognosis using ANFIS.
【2h】

Automated wind turbine pitch fault prognosis using ANFIS.

机译:使用ANFIS的自动风力发电机俯仰故障预测。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many current wind turbine (WT) studies focus on improving their reliability and reducing the cost of energy, particularly when WTs are operated offshore. WT Supervisory Control and Data Acquisition (SCADA) systems contain alarms and signals that provide significant important information. A possible WT fault can be detected through a rigorous analysis of the SCADA data. This paper proposes a new method for analysing WT SCADA data by using Adaptive Neuro-Fuzzy Inference System (ANFIS) with the aim to achieve automated detection of significant pitch faults. Two existing statistical analysis approaches were applied to detect common pitch fault symptoms. Based on the findings, an ANFIS Diagnosis Procedure was proposed and trained. The trained system was then applied in a wind farm containing 26 WTs to show its prognosis ability for pitch faults. The result was compared to a SCADA Alarms approach and the comparison has demonstrated that the ANFIS approach gives prognostic warning of pitch faults ahead of pitch alarms. Finally, a Confusion Matrix analysis was made to show the accuracy of the proposed approach.
机译:当前许多风力涡轮机(WT)研究都集中在提高其可靠性和降低能源成本上,特别是当WTs在海上运行时。 WT监督控制和数据采集(SCADA)系统包含提供重要重要信息的警报和信号。可以通过对SCADA数据进行严格分析来检测出可能的WT故障。本文提出了一种利用自适应神经模糊推理系统(ANFIS)分析WT SCADA数据的新方法,旨在实现对重大俯仰故障的自动检测。应用了两种现有的统计分析方法来检测常见的螺距故障症状。基于这些发现,提出并培训了ANFIS诊断程序。然后将训练有素的系统应用于包含26台WT的风电场,以显示其对俯仰故障的预测能力。将结果与SCADA警报方法进行了比较,比较结果表明ANFIS方法可在螺距警报之前提供螺距故障的预后警告。最后,进行了混淆矩阵分析以显示所提出方法的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号