首页> 外文OA文献 >Swarm intelligence algorithms for macroscopic traffic flow model validation with automatic assignment of fundamental diagrams.
【2h】

Swarm intelligence algorithms for macroscopic traffic flow model validation with automatic assignment of fundamental diagrams.

机译:群智能算法用于宏观交通流模型验证,并自动分配基本图。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper is concerned with the problem of macroscopic road traffic flow model calibration and verification. Thoroughly validated models are necessary for both control system design and scenario evaluation purposes. Here, the second order traffic flow model METANET was calibrated and verified using real data.ududA powerful optimisation problem formulation is proposed for identifying a set of model parameters that makes the model fit to measurements. For the macroscopic traffic flow model validation problem, this set of parameters characterise the aggregate traffic flow features over a road network. In traffic engineering, one of the most important relationships whose parameters need to be determined is the fundamental diagram of traffic, which models the non-linear relationship between vehicular flow and density. Typically, a real network does not exhibit the same traffic flow aggregate behaviour everywhere and different fundamental diagrams are used for covering different network areas. As a result, one of the initial steps of the validation process rests on expert engineering opinion assigning the spatial extension of fundamental diagrams. The proposed optimisation problem formulation allows for automatically determining the number of different fundamental diagrams to be used and their corresponding spatial extension over the road network, simplifying this initial step. Although the optimisation problem suffers from local minima, good solutions which generalise well were obtained.ududThe design of the system used is highly generic and allows for a number of evolutionary and swarm intelligence algorithms to be used. Two UK sites have been used for testing it. Calibration and verification results are discussed in detail. The resulting models are able to capture the dynamics of traffic flow and replicate shockwave propagation.ududA total of ten different algorithms were considered and compared with respect to their ability to converge to a solution, which remains valid for different sets of data. Particle swarm optimisation (PSO) algorithms have proven to be particularly effective and provide the best results both in terms of speed of convergence and solution generalisation. An interesting result reported is that more recently proposed PSO algorithms were outperformed by older variants, both in terms of speed of convergence and model error minimisation.
机译:本文涉及宏观道路交通流模型的标定和验证问题。全面验证的模型对于控制系统设计和方案评估都是必需的。在此,使用实际数据对二阶交通流模型METANET进行了校准和验证。 ud ud提出了一种强大的优化问题公式,用于识别使模型适合测量的一组模型参数。对于宏观交通流模型验证问题,这组参数表征了道路网络上的总交通流特征。在交通工程中,需要确定参数的最重要的关系之一是交通基本图,该图对车辆流量与密度之间的非线性关系进行建模。通常,真实的网络不会在所有地方都表现出相同的流量聚合行为,并且使用不同的基本图来覆盖不同的网络区域。结果,验证过程的初始步骤之一在于分配基本图的空间扩展的专家工程意见。提出的优化问题公式可自动确定要使用的不同基本图的数量及其在道路网络上的相应空间扩展,从而简化了此初始步骤。尽管优化问题受到局部极小值的困扰,但是却获得了很好的概括解决方案。 ud ud所用系统的设计具有很高的通用性,可以使用许多进化和群体智能算法。已在两个英国站点进行了测试。校准和验证结果将详细讨论。生成的模型能够捕获交通流的动态并复制冲击波的传播。 ud ud总共考虑了十种不同的算法,并比较了它们收敛到解决方案的能力,这些算法对于不同的数据集仍然有效。事实证明,粒子群优化(PSO)算法特别有效,并且在收敛速度和解决方案泛化方面均能提供最佳结果。报告的有趣结果是,在收敛速度和模型误差最小化方面,较新提出的PSO算法的性能优于较旧的PSO算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号