首页> 外文OA文献 >Genre-adaptive semantic computing and audio-based modelling for music mood annotation.
【2h】

Genre-adaptive semantic computing and audio-based modelling for music mood annotation.

机译:音乐心情注释的体裁自适应语义计算和基于音频的建模。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study investigates whether taking genre into account is beneficial for automatic music mood annotation in terms of core affects valence, arousal, and tension, as well as several other mood scales. Novel techniques employing genre-adaptive semantic computing and audio-based modelling are proposed. A technique called the ACTwg employs genre-adaptive semantic computing of mood-related social tags, whereas ACTwg-SLPwg combines semantic computing and audio-based modelling, both in a genre-adaptive manner. The proposed techniques are experimentally evaluated at predicting listener ratings related to a set of 600 popular music tracks spanning multiple genres. The results show that ACTwg outperforms a semantic computing technique that does not exploit genre information, and ACTwg-SLPwg outperforms conventional techniques and other genre-adaptive alternatives. In particular, improvements in the prediction rates are obtained for the valence dimension which is typically the most challenging core affect dimension for audio-based annotation. The specificity of genre categories is not crucial for the performance of ACTwg-SLPwg. The study also presents analytical insights into inferring a concise tag-based genre representation for genre-adaptive music mood analysis.
机译:这项研究从核心影响价,唤醒和紧张以及其他几种情绪量表的角度研究了体裁是否对自动音乐情绪注释有帮助。提出了采用体裁自适应语义计算和基于音频的建模的新技术。一种称为ACTwg的技术采用了与情绪相关的社会标签的体裁自适应语义计算,而ACTwg-SLPwg则以体裁自适应的方式结合了语义计算和基于音频的建模。在预测与多个流派的600条流行音乐曲目相关的听众评级时,对所提议的技术进行了实验评估。结果表明,ACTwg优于不利用体裁信息的语义计算技术,而ACTwg-SLPwg优于常规技术和其他适应类型的替代方法。特别地,对于价数维度获得了预测率的改进,价数维度通常是基于音频的注释中最具挑战性的核心影响维度。流派类别的特异性对于ACTwg-SLPwg的表现并非至关重要。这项研究还提出了分析见解,可以推断出基于标签的简洁流派表示形式,以适应流派的音乐情绪分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号