首页> 外文OA文献 >Robust visual tracking via speedup multiple kernel ridge regression.
【2h】

Robust visual tracking via speedup multiple kernel ridge regression.

机译:通过加速多核岭回归实现强大的视觉跟踪。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Most of the tracking methods attempt to build up feature spaces to represent the appearance of a target. However, limited by the complex structure of the distribution of features, the feature spaces constructed in a linear manner cannot characterize the nonlinear structure well. We propose an appearance model based on kernel ridge regression for visual tracking. Dense sampling is fulfilled around the target image patches to collect the training samples. In order to obtain a kernel space in favor of describing the target appearance, multiple kernel learning is introduced into the selection of kernels. Under the framework, instead of a single kernel, a linear combination of kernels is learned from the training samples to create a kernel space. Resorting to the circulant property of a kernel matrix, a fast interpolate iterative algorithm is developed to seek coefficients that are assigned to these kernels so as to give an optimal combination. After the regression function is learned, all candidate image patches gathered are taken as the input of the function, and the candidate with the maximal response is regarded as the object image patch. Extensive experimental results demonstrate that the proposed method outperforms other state-of-the-art tracking methods.
机译:大多数跟踪方法都试图建立特征空间来表示目标的外观。然而,受特征分布复杂结构的限制,以线性方式构造的特征空间无法很好地表征非线性结构。我们提出了一种基于内核岭回归的外观模型,用于视觉跟踪。在目标图像补丁周围进行密集采样以收集训练样本。为了获得有利于描述目标外观的内核空间,在内核选择中引入了多种内核学习。在该框架下,不是单个内核,而是从训练样本中学习内核的线性组合以创建内核空间。借助于核矩阵的循环性质,开发了一种快速插值迭代算法,以寻找分配给这些核的系数,从而给出最佳组合。学习回归函数后,将收集的所有候选图像斑块作为函数的输入,将响应最大的候选图像斑块作为目标图像斑块。大量的实验结果表明,该方法优于其他最新的跟踪方法。

著录项

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号