首页> 外文OA文献 >The iImportance of vibronic coupling for efficient reverse intersystem crossing in thermally activated delayed fluorescence molecules.
【2h】

The iImportance of vibronic coupling for efficient reverse intersystem crossing in thermally activated delayed fluorescence molecules.

机译:振动耦合对热活化延迟荧光分子有效逆向系统间穿越的重要性。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Factors influencing the rate of reverse intersystem crossing (krISC) in thermally activated delayed fluorescence (TADF) emitters are critical for improving the efficiency and performance of third-generation heavy-metal-free organic light-emitting diodes (OLEDs). However, present understanding of the TADF mechanism does not extend far beyond a thermal equilibrium between the lowest singlet and triplet states and consequently research has focused almost exclusively on the energy gap between these two states. Herein, we use a model spin-vibronic Hamiltonian to reveal the crucial role of non-Born-Oppenheimer effects in determining krISC. We demonstrate that vibronic (nonadiabatic) coupling between the lowest local excitation triplet (3LE) and lowest charge transfer triplet (3CT) opens the possibility for significant second-order coupling effects and increases krISC by about four orders of magnitude. Crucially, these simulations reveal the dynamical mechanism for highly efficient TADF and opens design routes that go beyond the Born-Oppenheimer approximation for the future development of high-performing systems.
机译:影响热激活延迟荧光(TADF)发射器中反向系统间交叉(krISC)速率的因素对于提高第三代无重金属有机发光二极管(OLED)的效率和性能至关重要。但是,目前对TADF机理的理解并没有超出最低的单重态和三重态之间的热平衡,因此研究几乎完全集中在这两个态之间的能隙上。在本文中,我们使用模型自旋振动哈密顿量来揭示非Born-Oppenheimer效应在确定krISC中的关键作用。我们证明最低的局部激发三重态(3LE)和最低的电荷转移三重态(3CT)之间的振动耦合(非绝热)为显着的二阶耦合效应打开了可能,并使krISC增大了大约四个数量级。至关重要的是,这些仿真揭示了高效TADF的动力学机制,并为高性能系统的未来开发提供了超越Born-Oppenheimer近似的设计路线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号