首页> 外文OA文献 >Signal processing methods for beat tracking, music segmentation, and audio retrieval
【2h】

Signal processing methods for beat tracking, music segmentation, and audio retrieval

机译:节拍跟踪,音乐分段和音频检索的信号处理方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The goal of music information retrieval (MIR) is to develop novel strategies and techniques for organizing, exploring, accessing, and understanding music data in an efficient manner. The conversion of waveform-based audio data into semantically meaningful feature representations by the use of digital signal processing techniques is at the center of MIR and constitutes a difficult field of research because of the complexity and diversity of music signals. In this thesis, we introduce novel signal processing methods that allow for extracting musically meaningful information from audio signals. As main strategy, we exploit musical knowledge about the signalsu27 properties to derive feature representations that show a significant degree of robustness against musical variations but still exhibit a high musical expressiveness. We apply this general strategy to three different areas of MIR: Firstly, we introduce novel techniques for extracting tempo and beat information, where we particularly consider challenging music with changing tempo and soft note onsets. Secondly, we present novel algorithms for the automated segmentation and analysis of folk song field recordings, where one has to cope with significant fluctuations in intonation and tempo as well as recording artifacts. Thirdly, we explore a cross-version approach to content-based music retrieval based on the query-by-example paradigm. In all three areas, we focus on application scenarios where strong musical variations make the extraction of musically meaningful information a challenging task.
机译:音乐信息检索(MIR)的目标是开发新颖的策略和技术,以有效的方式组织,探索,访问和理解音乐数据。通过使用数字信号处理技术将基于波形的音频数据转换为语义上有意义的特征表示,是MIR的中心,由于音乐信号的复杂性和多样性,构成了研究的难题。在本文中,我们介绍了一种新颖的信号处理方法,可以从音频信号中提取音乐上有意义的信息。作为主要策略,我们利用有关信号属性的音乐知识来导出特征表示,这些特征表示对音乐变化表现出显着的鲁棒性,但仍具有很高的音乐表现力。我们将此通用策略应用于MIR的三个不同领域:首先,我们引入了用于提取速度和节拍信息的新颖技术,其中,我们特别考虑具有变化的速度和柔和音符开始的挑战性音乐。其次,我们提出了新颖的算法,用于自动分割和分析民歌现场录音,其中必须应对语调和节奏以及录音伪像的重大波动。第三,我们探索了一种基于示例查询范式的跨版本方法,用于基于内容的音乐检索。在所有这三个领域中,我们专注于应用场景,在这些场景中,强烈的音乐变化会导致音乐意义上的信息提取成为一项艰巨的任务。

著录项

  • 作者

    Grosche Peter Matthias;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号