We propose the use of an Extreme Learning Machine initialised as auto-encoder for emotion recognition from speech. This method is evaluated on three different speech corpora, namely EMO-DB, eNTERFACE and SmartKom. We compare our approach against state-of-the-art recognition rates achieved by Support Vector Machines (SVMs) and a deep learning approach based on Generalised Discriminant Analysis (GerDA). We could improve the recognition rate compared to SVMs by 3%-14% on all three corpora and those compared to GerDA by 8%-13% on two of the three corpora.
展开▼