首页> 外文OA文献 >A fault detection tool using analysis from an autoregressive model pole trajectory
【2h】

A fault detection tool using analysis from an autoregressive model pole trajectory

机译:一种基于自回归模型极轨分析的故障检测工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new scheme is proposed that combines autoregressive (AR) modelling techniques and pole-related spectral\uddecomposition for the study of incipient single-point bearing defects for a vibration-based condition monitoring system.\udVibration signals obtained from the ball bearings from the high vacuum (HV) and low vacuum (LV) ends of a dry vacuum\udpump run in normal and faulty conditions are modelled as time-variant AR series. The appearance of spurious peaks in the\udfrequency domain of the vibration signatures translates to the onset of defects in the rolling elements. As the extent of the\uddefects worsens, the amplitudes of the characteristic defect frequencies’ spectral peaks increase. This can be seen as the AR\udpoles moving closer to the unit circle as the severity of the defects increase. The number of poles equals the AR model\udorder. Although not all of the poles are of interest to the user. It is only the poles that have angular frequencies close to the\udcharacteristic bearing defect frequencies that are termed the ‘critical poles’ and are tracked for quantification of the main\udspectral peaks. The time-varying distance, power and frequency components can be monitored by tracking the movement\udof critical poles. To test the efficacy of the scheme, the proposed method was applied to increasing frame sizes of vibration\uddata captured from a pump in the laboratory. It was found that a sample size of 4000 samples per frame was sufficient for\udalmost perfect detection and classification when the AR poles’ distance from the centre of unit circle was used as the fault\udindicator. The power of the migratory poles was an alternative perfect classifier, which can be used as a fault indicator. The\udanalysis has been validated with actual data obtained from the pump. The proposed method has interesting potential\udapplications in condition monitoring, diagnostic and prognostic-related systems.
机译:提出了一种结合自回归(AR)建模技术和极点相关光谱\ ud分解的新方案,用于研究基于振动的状态监测系统的初期单点轴承缺陷。在正常和故障情况下运行的干式真空\泵的真空(HV)和低真空(LV)端均建模为随时间变化的AR系列。振动特征的\ udfrequency域中出现的虚假峰转化为滚动元件中缺陷的产生。随着缺陷的程度恶化,特征缺陷频率的频谱峰值的幅度会增加。可以看出,随着缺陷的严重性增加,AR \ U极移近单位圆。极数等于AR模型\ udorder。尽管并非所有的极点都对用户感兴趣。只有角频率接近“特征轴承缺陷频率”的极点才被称为“关键极点”,并对其进行跟踪以量化主\超谱峰。随时间变化的距离,功率和频率分量可以通过跟踪关键极点的运动\ ud来监控。为了测试该方案的有效性,将所提出的方法应用于增加从实验室中的泵捕获的振动\ uddata的框架大小。结果发现,当AR极距单位圆心的距离用作故障指示符时,每帧4000个样本的大小足以\最完美地进行检测和分类。迁移杆的功能是另一种完美的分类器,可以用作故障指示器。已使用从泵获得的实际数据验证了\ udanalysis。所提出的方法在状态监测,诊断和预后相关系统中具有有趣的潜在应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号