首页> 外文OA文献 >Ab initio study of the work functions of elemental metal crystals
【2h】

Ab initio study of the work functions of elemental metal crystals

机译:从头开始研究元素金属晶体的功函数

摘要

This thesis is concerned with the theoretical study of the physical characteristics of metallic surfaces. Ab initio quantum calculations are performed to determine the electronic properties of clean elemental metal surfaces, fully accounting for the material's atomic structure. We aim to understand the atomicscale mechanisms responsible for the dependence of the work function on the surface geometry, including the crystallographic orientation of the surface, the atomic relaxation and reconstruction, as well as the effect of surface edges. We present an accurate method to derive work functions from self-consistent thin-film calculations. By applying a technique based on a macroscopic average, we filter the atomic oscillations in the electronic density to measure precisely the electrostatic potential step at the crystal surface. Combining this quantity with the Fermi energy of a bulk crystal is shown to reduce size effects on the work functions and to yield very precise values. The microscopic origin of the work function anisotropy is studied in sodium, aluminium, copper and gold. For these metals, we find that the trends of increasing work functions for the principal surface orientations reproduce the experimental data and that the trend in aluminium is different from most other metals. The origin of the work function anisotropy is discussed in relation with the orbital character of the electronic states at the Fermi energy. Our study of metal surfaces is extended to the facets of a finite crystal. First-principles studies of the electronic structure of nanowires enable us to obtain the electrostatic potential outside a variety of infinitely-long facet edges. In particular, we determine the microscopic mechanism that allows two different work functions to coexist on either side of a facet edge.
机译:本文涉及金属表面物理特性的理论研究。从头进行量子计算以确定干净的元素金属表面的电子性质,充分考虑了材料的原子结构。我们旨在了解负责功函数对表面几何形状依赖性的原子级机理,包括表面的晶体学取向,原子弛豫和重构以及表面边缘的影响。我们提出一种从自洽薄膜计算中导出功函数的准确方法。通过应用基于宏观平均值的技术,我们可以过滤电子密度中的原子振荡,以精确测量晶体表面的静电势阶。该量与块状晶体的费米能结合在一起,可以减小尺寸对功函数的影响,并产生非常精确的值。在钠,铝,铜和金中研究了功函数各向异性的微观起源。对于这些金属,我们发现主要表面取向的功函数增加的趋势再现了实验数据,并且铝的趋势与大多数其他金属不同。讨论了功函数各向异性的起源与费米能量下电子态的轨道特性的关系。我们对金属表面的研究扩展到了有限晶体的各个方面。对纳米线电子结构的第一性原理研究使我们能够获得各种无限长的刻面边缘之外的静电势。尤其是,我们确定了微观机制,该机制允许两种不同的功函数在小平面边缘的任一侧上共存。

著录项

  • 作者

    Fall Caspar;

  • 作者单位
  • 年度 1999
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号