首页> 外文OA文献 >Estimation of ocean surface currents from maximum cross correlation applied to GOCI geostationary satellite remote sensing data over the Tsushima (Korea) Straits
【2h】

Estimation of ocean surface currents from maximum cross correlation applied to GOCI geostationary satellite remote sensing data over the Tsushima (Korea) Straits

机译:根据对马海峡(韩国)海峡GOCI对地静止卫星遥感数据的最大互相关估计海面洋流

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Attempts to automatically estimate surface current velocities from satellite-derived thermal or visible imagery face the limitations of data occlusion due to cloud cover, the complex evolution of features and the degradation of their surface signature. The Geostationary Ocean Color Imager (GOCI) provides a chance to reappraise such techniques due to its multi-year record of hourly high-resolution visible spectrum data. Here we present the results of applying a Maximum Cross Correlation (MCC) technique to GOCI data. Using a combination of simulated and real data we derive suitable processing parameters and examine the robustness of different satellite products, those being water-leaving radiance and chlorophyll concentration. These estimates of surface currents are evaluated using High Frequency (HF) radar systems located in the Tsushima (Korea) Strait. We show the performance of the MCC approach varies depending on the amount of missing data and the presence of strong optical contrasts. Using simulated data it was found that patchy cloud cover occupying 25 % of the image pair reduces the number of vectors by 20 % compared to using perfect images. Root mean square errors between the MCC and HF radar velocities are of the order of 20 cm s -1 . Performance varies depending on the wavelength of the data with the blue-green products out-performing the red and near infra-red products. Application of MCC to GOCI chlorophyll data results in similar performance to radiances in the blue-green bands. The technique has been demonstrated using specific examples of an eddy feature and tidal induced features in the region.
机译:尝试从卫星衍生的热图像或可见光图像中自动估算表面电流速度面临着由于云层覆盖,特征复杂的演化以及表面特征退化而导致数据阻塞的局限性。地球静止海洋彩色成像仪(GOCI)由于其每小时高分辨率高分辨率可见光谱数据的多年记录,为重新评估此类技术提供了机会。在这里,我们介绍了将最大互相关(MCC)技术应用于GOCI数据的结果。使用模拟数据和真实数据的组合,我们得出合适的处理参数,并检查了不同卫星产品的稳健性,这些卫星产品是留水辐射率和叶绿素浓度。这些表面电流的估计值是使用位于对马(韩国)海峡的高频(HF)雷达系统进行评估的。我们显示,MCC方法的性能取决于丢失的数据量和强烈的光学对比的存在。使用模拟数据发现,与使用完美图像相比,占图像对25%的斑驳云层使矢量数量减少了20%。 MCC和HF雷达速度之间的均方根误差约为20 cm s -1。性能取决于数据的波长,其中蓝绿色产品的性能优于红色和近红外产品。将MCC应用于GOCI叶绿素数据可产生与蓝绿色波段中的辐射相似的性能。已经使用该区域中涡流特征和潮汐引起的特征的特定示例证明了该技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号