首页> 外文OA文献 >Spatio-temporal Rich Model Based Video Steganalysis on Cross Sections of Motion Vector Planes
【2h】

Spatio-temporal Rich Model Based Video Steganalysis on Cross Sections of Motion Vector Planes

机译:运动向量平面横截面上基于时空丰富模型的视频隐写分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A rich model based motion vector steganalysis benefiting from both temporal and spatial correlations of motion vectors is proposed in this work. The proposed steganalysis method has a substantially superior detection accuracy than the previous methods, even the targeted ones. The improvement in detection accuracy lies in several novel approaches introduced in this work. Firstly, it is shown that there is a strong correlation, not only spatially but also temporally, among neighbouring motion vectors for longer distances. Therefore, temporal motion vector dependency along side the spatial dependency is utilized for rigorous motion vector steganalysis. Secondly, unlike the filters previously used, which were heuristically designed against a specific motion vector steganography, a diverse set of many filters which can capture aberrations introduced by various motion vector steganography methods is used. The variety and also the number of the filter kernels are substantially more than that of used in previous ones. Besides that, filters up to fifth order are employed whereas the previous methods use at most second order filters. As a result of these, the proposed system captures various decorrelations in a wide spatio-temporal range and provides a better cover model. The proposed method is tested against the most prominent motion vector steganalysis and steganography methods. To the best knowledge of the authors, the experiments section has the most comprehensive tests in motion vector steganalysis field including five stego and seven steganalysis methods. Test results show that the proposed method yields around 20% detection accuracy increase in low payloads and 5% in higher payloads.
机译:在这项工作中,提出了一种基于丰富模型的运动矢量隐写分析,该模型受益于运动矢量的时间和空间相关性。所提出的隐写分析方法具有比以前的方法甚至目标方法都更高的检测精度。检测准确性的提高在于这项工作中引入的几种新颖方法。首先,示出了在较长距离的相邻运动矢量之间不仅在空间上而且在时间上都具有强相关性。因此,沿着空间依赖关系的时间运动矢量依赖关系被用于严格的运动矢量隐写分析。其次,与先前使用的针对特定运动矢量隐写术进行启发式设计的滤波器不同,使用了多种多样的许多滤镜,它们可以捕获由各种运动矢量隐写术方法引入的像差。过滤器内核的种类和数量都大大超过了以前的内核。除此之外,采用最高五阶的滤波器,而先前的方法最多使用二阶滤波器。结果,所提出的系统捕获了宽时空范围内的各种解相关,并提供了更好的覆盖模型。针对最突出的运动矢量隐写分析和隐写术方法对提出的方法进行了测试。据作者所知,实验部分在运动矢量隐写分析领域进行了最全面的测试,包括五种隐写方法和七种隐写分析方法。测试结果表明,所提出的方法在低有效载荷下的检测精度提高了约20%,在高有效载荷下的检测精度提高了5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号