首页> 外文OA文献 >Crack propagation in non-homogenous materials: Evaluation of mixed-mode SIFs, T-stress and kinking angle using a variant EFG method
【2h】

Crack propagation in non-homogenous materials: Evaluation of mixed-mode SIFs, T-stress and kinking angle using a variant EFG method

机译:非均质材料中的裂纹扩展:使用变型EFG方法评估混合模式SIF,T应力和扭折角

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

A new variant of the Element-Free Galerkin (EFG) method, that combines the diffraction method, to characterize the crack tip solution, and the Heaviside enrichment function for representing discontinuity due to a crack, has been used to model crack propagation through non-homogenous materials. In the case of interface crack propagation, the kink angle is predicted by applying the maximum tangential principal stress (MTPS) criterion in conjunction with consideration of the energy release rate (ERR). The MTPS criterion is applied to the crack tip stress field described by both the stress intensity factor (SIF) and the T-stress, which are extracted using the interaction integral method. The proposed EFG method has been developed and applied for 2D case studies involving a crack in an orthotropic material, crack along an interface and a crack terminating at a bi-material interface, under mechanical or thermal loading; this is done to demonstrate the advantages and efficiency of the proposed methodology. The computed SIFs, T-stress and the predicted interface crack kink angles are compared with existing results in the literature and are found to be in good agreement. An example of crack growth through a particle-reinforced composite materials, which may involve crack meandering around the particle, is reported.
机译:一种新的无元素Galerkin(EFG)方法变体,其结合了衍射方法以表征裂纹尖端解决方案,以及用于表示由于裂纹引起的不连续性的Heaviside富集功能,已被用于模拟通过非裂纹扩展的裂纹扩展。均质材料。在界面裂纹扩展的情况下,通过考虑能量释放速率(ERR)并应用最大切向主应力(MTPS)准则来预测弯折角。 MTPS准则适用于由应力强度因子(SIF)和T应力描述的裂纹尖端应力场,这些应力强度因子是使用相互作用积分法提取的。所提出的EFG方法已经开发并应用于二维案例研究,涉及正交各向异性材料中的裂纹,沿界面的裂纹以及在机械或热负荷下终止于双材料界面的裂纹;这样做是为了证明所提出方法的优点和效率。将计算出的SIF,T应力和预测的界面裂纹扭结角与文献中的现有结果进行比较,发现它们具有很好的一致性。报道了通过颗粒增强的复合材料产生的裂纹扩展的示例,该裂纹扩展可能涉及颗粒周围的裂纹。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号